Hydrogen and Electrical Energy Storage

12 March 2013

F.M. Mulder & M. Wagemaker

Radiation, Radionuclides and Reactors

Program Batteries

- Lecture 1: History, Applications, basic Electrochemistry and thermodynamics Feb 27 of batteries: Redox reactions, Gibbs free energy, chemical potential, Nernst.
- Lecture 2: Solid state electrode reaction mechanisms, phase diagrams, phase rule,March 6 Gibbs Free energy, voltage profiles, capacities and energy densities.Li-ion batteries
- Lecture 3: Continue topics Lecture 2.
- March 13 Electrolyte stability: Pourbaix diagram, band structure solids, Cycle life.
- Lecture 4: Kinetics, Buttler-Volmer, diffusion, solid state diffusion
- March 20 Discussion on Science paper 6 seconds discharge.
- Lecture 5: Super capacitors
- March 27 Future systems: Li-air, Li-sulphur Flow-cells Costs and Performance comparison batteries/systems Material Abundance

12 March 2013

2

Delft University of Technology

Practical Issues

Book chapters, scientific literature and sheets will be available on BB

Lecture 1:	Electrochemistry 2.3-2.5
Lecture 2:	Advanced Batteries: Chapter 1, 2 and 3.1-3.3
Lecture 3:	Advanced Batteries Chapter 14.1,14.2,14.B1-4, 16.1-2,16B, Review Goodenough et al. Chemistry of Materials and lecture sheets
Lecture 4:	Electrochemistry 3.1-3.3, Lecture sheets
Lecture 5:	Lecture sheets, Review Bruce et al. Li-air/Li-sulphur

Home assignment

Consider the following phase diagram for a cathode, and assume that the anode has a constant voltage independent of the composition and that T and p are constant:

a) Apply the Gibbs Phase Rule along T_1 in the regions $\alpha+\beta$ and β , is the potential constant?

b) Sketch the voltage diagram

12 March 2013

Gibbs Phase Rule

F = C - P + 2

- *F:* Number of degrees freedom
- *C:* Number of components (e.g. elements)
- *P:* Number of phases present in this system

Number of degrees freedom: Number of intensive thermodynamic parameters (T, p, μ , x) that must be specified to define the system (if true other intensive parameters are constant, if not they vary)

Example: suppose F=1 and T is specified => p, μ and x are fixed Example: suppose F=3 and p,T is specified => μ will vary (depending on x)

12 March 2013

F=2 and p,T is specified => other intensive variables are fixed/constant μ is constant => voltage is constant.

Note, composition of phases (ratio A/B) at points, A, B, C and D is also constant (also intensive variable)

12 March 2013

Question Gibbs Phase Rule 3

- 19. What is the number of degrees of Freedom, F=C-P+2, in the red circle?
- a) 1 b) 2

c) 3

d) no clue

20. What does this mean assuming constant p,T?

- a) constant voltage
- b) variable voltage
- d) no clue

12 March 2013

Question Gibbs Phase Rule 3

19. What is the number of degrees of Freedom, F, in the red circle?

Liquid

L+β

- a) 1
- b) 2
- c) 3
- d) No clue

Temperature β+L α β 20. What does this mean assuming constant p,T? T_1 $\alpha + \beta$ $\beta + \gamma$ a) Constant voltage b) variable voltage С В D А c) no clue Pure B Pure A F = C - P + 2Composition = 2 - 1 + 2 = 3

 $\alpha + L$

 E_{cell} = variable (depends on composition)!=> 19c) and 20b)

12 March 2013

9

Liquid

Ĺ+γ

Question Lithium storage in Antimony

Question Lithium storage in Antimony

Type: A+B=AB: Reconstitution-formation => 21b)

12 March 2013

Question Lithium storage in Antimony

TUDelft

A different view, Voltage profile from the Gibbs Free Energy

12 March 2013

Gibbs Free Energy

$$dG = Vdp - SdT + \sum_{j} \mu_{j} dn_{j} \stackrel{\text{Constant p and T}}{=} \sum_{j} \mu_{j} dn_{j} \Rightarrow \frac{\partial G(x)}{\partial n} \Big|_{T,p} = \mu_{Electrode}^{Li}$$

 ΔG determines the direction of the reaction (and W_{chem}). The shape of G(x) how it gets there

12 March 2013

Discharge of Li-ion battery:

 $Li_{x}C_{6} = Li^{+} + e^{-} + C_{6}$ FePO₄ + Li⁺ + e⁻ = LiFePO₄

(Oxidation/Anode) (Reduction/Cathode)

Overall reaction:

$$\operatorname{LiC}_{6} + \operatorname{FePO}_{4} = \operatorname{C}_{6} + \operatorname{LiFePO}_{4}$$

$$E_{Cell} dQ = E_{Cell} zFdn = -\sum_{j} \mu_{j} dn = \left(\mu_{LiFePO_{4}}^{Li} - \mu_{LiC_{6}}^{Li}\right) dn$$

$$\Longrightarrow E_{Cell}(x) = -\frac{\mu_{LiFePO_{4}}^{Li} - \mu_{LiC_{6}}^{Li}}{F} = -\frac{\mu_{Cathode}^{Li}(x) - \mu_{Anode}^{Li}}{F}$$

Assume
$$\mu_{Anode}^{Li} = \text{constant}$$

12 March 2013

In order to know the Voltage profile $E_{Cell}(x)$ we need $\mu_{Cathode}(x)$, which will depend on the Gibbs free energy G(x) of the cathode.

We know: $\mu_{Cathode}^{Li} = \frac{dG_{Cathode}(x)}{dn}$ where *dn* is the number of moles of Li

It is more convenient to work with the Gibbs free energy per mole host material g(x).

Suppose we have N mole of Cathode C and n moles of interstitial Li ions in the Cathode

such that:
$$n = xN$$
, then $g(x) = \frac{G(x)}{N}$

$$\mu_{Cathode}^{Li} = \frac{\partial G(x)}{\partial n}\Big|_{T,p,N} = \frac{\partial (Ng(x))}{\partial n}\Big|_{T,p,N} = \frac{N\partial g(x)}{N\partial x}\Big|_{T,p,N} = \frac{\partial g(x)}{\partial x}\Big|_{T,p,N}$$
Slope in g(x) plot!

Solid solution

$$\mu_{Cathode}^{Li} = \frac{\partial g(x)}{\partial x}$$
$$E_{Cell}(x) = -\frac{\mu_{Cathode}^{Li}(x) - \mu_{Anode}^{Li}}{zF}$$

Open cell voltage is changing with composition:

Composition x

12 March 2013

Gibbs phase rule <-> Shape Gibbs Free energy

Li-ion batteries, relation Gibbs and phase diagram

Question Gibbs Free Energy 1 Gibbs free energy g(x) J/mol

Composition x

Based on the Gibbs Free Energy of the cathode, and assuming Li metal as anode, how does the voltage profile look like? 23.

Question Gibbs Free Energy 1

23. Based on the Gibbs Free Energy of the cathode, and assuming Li metal as anode, how does the voltage profile look like?

Practical questions

What is the direction of a redox reaction?

What is the voltage that a redox reaction can deliver?

What is the energy density of a battery?

What determines the cycle life of a battery

What is the power density of a battery? -> kinetics

Cycle Life of Batteries

12 March 2013

Cycle Life of Batteries

Reduced cycle life:

Energy loss due to increasing cell impedance and due loss of active material

Reasons for reduced cycle life:

- (1) Structural changes in the electrodes upon (dis)charge
- (2) Thermodynamic instability electrode-electrolyte leading to decomposition of the electrolyte

Structural changes of the electrodes upon (dis)charge

12 March 2013

Structural changes of the electrode Reconstitution-Formation reactions

Volume expansion almost 400% Leads to mechanical failure -> Loss in capacity.

Rule of thumb, less than 10% Volume expansion will lead to good mechanical cycle life

12 March 2013

Intermezzo: Strategies Alloy anode

 Space for Li_{4.4}Sn volume expansion
 No loss of contact due to confinement in Carbon sphere

12 March 2013

Structural changes of the electrode Reconstitution-Displacement reactions

(a) $Li^+ + e^- + RuO_2 -> LiRuO_2$

(b) $Li^+ + e^- + LiRuO_2 -> 2Li_2O + Ru$

(c1) $Li^+ + e^- + electrolyte -> SEI(Li)$

(Li-insertion, see later)

(reconsititution-displacement)

(supercapacitive behavior, later)

Host material decomposes in Li₂O and metal

SEI: Solid electrolyte interface: forms during first (dis)charge cycles, decomposed electrolyte (later)

12 March 2013

Structural changes of the electrode Reconstitution-Displacement reactions

12 March 2013

Structural changes of the electrode Insertion-reactions

Electrode material serves as a host, also phase changes possible (structural changes):

Example: LiCoO₂:

 $(+) \text{Li}_{0.5}\text{CoO}_2(s) + 0.5\text{Li}^+ + 0.5\text{e}^- \xrightarrow{\text{discharge}} \text{Li}_1\text{CoO}_2(s) \qquad (4 \text{ V vs Li/Li}^+)$ $(-) \text{Li}_x\text{C}_6 \xrightarrow{\text{discharge}} 6\text{C} + x\text{Li}^+ + x\text{e}^- \qquad (1 \text{ V vs Li/Li}^+)$

Such reactions lead in most cases to mechanical failure after many cycles due to swelling-shrinking associated with the structural changes.

Structural changes of the electrode Insertion-reactions: LiCoO₂

12 March 2013

Structural changes of the electrode Insertion-reactions: Li₄Ti₅O₁₂

12 March 2013

-2-

Thermodynamic instability electrode-electrolyte leading to decomposition of the electrolyte

12 March 2013

Decomposition of the electrolyte

12 March 2013

Electrochemical cells, driving force

Standard reduction potentials are commonly denoted by the symbol ε° . (means under standard conditions 293 K and 1 bar, 1 molair concentrations) ε° values for hundreds of electrodes have been determined and are usually tabulated in order of increasing tendency to accept electrons (increasing oxidizing power.)

The more positive the half-cell EMF, the smaller the tendency of the reductant to donate electrons, and the larger the tendency of the oxidant to accept electrons

oxidant	reductant	E° volte
(electron acceptor)	(electron donor)	
Na+ + e>	Na <i>(s)</i>	-2.71
Zn ²⁺ + 2e ⁻ ->	Zn <i>(s)</i>	76
Fe ²⁺ + 2e ⁻ ->	Fe <i>(s)</i>	44
Cd ²⁺ + 2e ⁻ ->	Cd <i>(s)</i>	40
Pb ²⁺ + 2e ⁻ ->	₽b <i>(s)</i>	126
2 H⁺ + 2e⁻ ->	$P_2(g)$	0.000
$\operatorname{AgCl}(s) + e^{-} \rightarrow U$	ב Ag <i>(s)</i> + Cl⁻ <i>(aq)</i>	+.222
$Hg_2Cl_2(s) + 2e^{-} -> \overleftarrow{b}$	ວ 2CI⁻ <i>(aq)</i> + 2Hg(l)	+.268
$Cu^{2+} + 2e^{-} -> \ge$	<u>≻</u> Cu <i>(s)</i>	+.337
$I_2(s) + 2e^>$	≚ 2 I⁻(s)	+.535
Fe ³⁺ + e ⁻ ->	P Fe ²⁺ (aq)	+.771
Ag+ + e>	≚ Ag <i>(s)</i>	+.799
$D_2(g) + 4H^+ + 4e^>$	2 H ₂ O(I)	+1.23
Cl ₂ (g) + 2e ⁻ ->	2 CI⁻(g)	+1.36

What is the potential difference we need to split water? Charge!

 $4H^+ + 4e^- + 2H_2O \rightarrow 2H_2 + O_2 + 4H^+ + 4e^-$, $E^o_{cell} = 1.23 - 0 = 1.23 V$

12 March 2013

Decomposition of the electrolyte

12 March 2013

Depends on concentrations H^+/OH^- (pH) of water => Nernst

$$E_{Cell} = E^0 - \frac{RT}{zF} \ln \Pi c_j^{\nu} = E^0 - \frac{RT}{zF} \ln(K)$$

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$

$$E_{H} = E_{H^{+}/H_{2}}^{o} - \frac{RT}{zF} \ln \frac{\left[H_{2}\right]}{\left[H^{+}\right]^{2}} = E_{H^{+}/H_{2}}^{o} - \frac{RT}{zF} \ln \frac{\left[p_{H_{2}}/p_{0}\right]}{\left[H^{+}\right]^{2}} = E_{H^{+}/H_{2}}^{o} - \frac{2.303RT}{zF} \log \frac{\left[p_{H_{2}}/p_{0}\right]}{\left[H^{+}\right]^{2}}$$

$$E_{H^{+}/H_{2}}^{o} = 0, \quad p_{H_{2}} = p_{0}, \quad pH = -\log\left[H^{+}\right]$$

$$E_{H} = -\frac{2.303RT}{2F} \left[\log\left[p_{H_{2}}/p_{0}\right] - 2\log\left[H^{+}\right]^{2}\right] = -\frac{2.303RT}{F} pH$$

12 March 2013

12 March 2013

Pourbaix Diagram

A more general way to look at it: band structure

12 March 2013

Band structure of solids

 ε_F : Fermi level, potential energy of an electron in a solid defined as the chemical potential of the electron: $\varepsilon_F = \mu_{e^-}$

Relation battery voltage and Fermi level

Difference in Fermi level Difference in electron chemical potential Difference in potential

$$E_{Cell} = \mu_{e^-}^A - \mu_{e^-}^C = \varepsilon_F^A - \varepsilon_F^C$$

12 March 2013

Relation battery voltage and Fermi level

12 March 2013

LUMO and HOMO inorganic materials

LUMO: Lowest Unoccupied Molecular Orbital (in conduction "band") HOMO: Highest Occupied Molecular Orbital (in valence "band")

Pourbaix Diagram

- 24. To prevent electrolyte decomposition:
- a) The difference between the LUMO and HOMO should be as small as possible
- b) LUMO-HOMO > $\epsilon_{F}^{A}-\epsilon_{F}^{C}$
- c) LUMO-HOMO < $\epsilon_{F}^{A}-\epsilon_{F}^{C}$
- d) LUMO> ϵ_{F}^{A} and ϵ_{F}^{C} >HOMO
- e) no clue

http://www.edupinion.nl/c619

Result

- 24. To prevent electrolyte decomposition:
- a) The difference between the LUMO and HOMO should be as small as possible
- b) LUMO-HOMO > $\varepsilon_{F}^{A}-\varepsilon_{F}^{C}$
- c) LUMO-HOMO < $\varepsilon_{F}^{A}-\varepsilon_{F}^{C}$
- d) LUMO> ϵ_{F}^{A} and ϵ_{F}^{C} >HOMO

e) no clue

12 March 2013

Electrolyte-electrode stability diagram

$$E_{Cell} = \phi_C - \phi_A = \mu_{e^-}^A - \mu_{e^-}^C = \varepsilon_F^A - \varepsilon_F^C$$

12 March 2013

Question electrolyte stability 2

25. The highest energy density electrode combination that will not result in electrolyte decomposition is:

- a) LiCoPO₄ vs Graphite
- b) $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4 \text{ vs LiVS}_2$
- c) $\text{Li}_3\text{V}_2(\text{PO}_4)$ vs $\text{LiTi}_2(\text{PS}_4)_3$
- d) $LiCoPO_4$ vs $LiVS_2$

e) no clue

http://www.edupinion.nl/c863

Result

Question electrolyte stability 2

25. The highest energy density electrode combination that will not result in electrolyte decomposition is:

a) LiCoPO₄ vs Graphite:

b)	LiNi _{0.5} Mn _{1.5} O ₄ vs LiVS ₂ :	~150x3.5=525

- c) $\text{Li}_3 V_2(\text{PO}_4)$ vs $\text{LiTi}_2(\text{PS}_4)_3$ ~270x2=545
- d) $LiCoPO_4$ vs $LiVS_2$

e) no clue

SEI Formation

Formation of the Solid Electrolyte Interface (SEI) at the negative electrode

Side reactions take mainly place at the interface between electrolyte and anode

At low voltage (0-0.8 V versus Li metal) the inorganic solvants are thermodynamically unstable versus the anode

Leads to the formation of a Solid Electrolyte Interface (SEI) layer (Li₂CO₃, alkyl-carbonates, polymers...)

Ethylene Carbonate (EC):

Dimethyl Carbonate (DMC):

12 March 2013

Example SEI Formation: Graphite

SEI Formation

(1) Form a stable electronic isolating layer (but ionic conducting) passivating further side reactions -> long cycle life

(2) Grow extensively blocking Li-transfer and reducing active surface area -> increasing the current density -> higher over potentials -> more SEI formation -> avalanche effect -> short cycle life

SEI

Electrolyte

Anode

12 March 2013

Demands Li-ion Electrolyte

Good (Li⁺) ionic conductor

- Electronic Isolator
- Stability window 5 V (depends on sys.)
- Stable up to ~ 70 degree celcius
- Cheap
- Non toxic

Mostly applied: Non aqueous solvents:

Ethylene Carbonate (EC), Dimethyl Carbonate (DMC)

Good ionic conduction, stability ~ 0.8-4.5 V (vs Li/Li⁺)

Medium toxic, flammable, unstable etc -> Casing battery should be very good (=expensive) Li salts: $LiCIO_4$ or $LiPF_6$: Toxic and expensive

Li-ion batteries, ionic liquids

Ionic liquid: salt in the liquid state:

electronic isolator good ionic conductor thermal stability non-flammable chemically stable (large stability window) safe cheap?

Li-ion Cycling Performance at 100°C

Li-ion batteries, solid electrolytes

Solid electrolytes:

Less difficulty/cost associated with long term encapsulating liquid electrolytes (that may start leaking), freedom design of batteries, high temp.

Example: polymer electrolytes like polyethyleneoxide

Because polymers can have intrinsic mobility of the polymer chains, a dissolved Li salt can also move through it. However, solid electrolytes show much lower Li⁺ conductivities (low power density)

Application limited to large systems that can be maintained at high temperatures

Poor ionic mobility, PEO LiI

12 March 2013

Li-ion batteries, electrolytes

Figure 8 Arrhenius plot of conductivity for various solid electrolytes. 1, Firstgeneration PEO-LiCF₃SO₅: 2, new solutes with high-dissociation PEO-Li[(CF₃SO₂)₂N]; 3, low-*T*_g combination polymer; 4, plasticized polymer electrolyte PEO-Li[(CF₃SO₂)₂N] + 25% w/w PEG-dimethylether (molecular weight, 250); liquid crystalline polymer electrolytes; 5, heating curves; 6, cooling curve⁵⁴; 7, gel-type polymer (X-linked PEO-dimethacrylate-Li[(CF₃SO₂)₂N]-PC 70%); 8, liquid electrolyte PC/DME LiCF₃SO₃; 9, liquid electrolyte EC/DMC-LiPF₆ at low temperature⁵¹; 10, gel electrolyte P(VDF-HFP)/EC/DMC-LiPF₆ (ref. 61). Other strategy:

Adding nano-particles increases the Conductivity in PEO-LiClO₄

12 March 2013

Space charges

Two ion conductors and poor electronic isolators:

$\mu_A > \mu_B$

$\left(\phi_{A}-\phi_{B}\right)=-rac{\left(\mu_{A}-\mu_{B}\right)}{F}$ $\mu_A + F\phi_A = \mu_B + F\phi_B$ $\overline{\mu}_A = \overline{\mu}_B$

Creates vacancies in A! Is called "Space Charge"

12 March 2013

For diffusion you need vacancies

12 March 2013

Li-ion batteries, electrolytes

Practical questions

What is the direction of a redox reaction?
What is the voltage that a redox reaction can deliver?
What is the energy density of a battery?
What determines the cycle life of a battery

What is the power density of a battery? -> kinetics

Practical Energy Density

Energy density only exists for a combination of electrodes, capacity times voltage:

$$EnergyDensity[J/g] = \frac{xzF\varepsilon_{Cell}}{M}$$

x: Fractional occupancy host materials Li_xM *F:* Faraday's constant [C/mol] *z:* number of electrons involved in the reaction (=1 for Li^+) ε_{Cell} : cell potential [V] *M:* mass of the electrodes (sum of both!) [g/mol]

Example:

(+) $Li_{0.5}CoO_2 + 0.5Li^+ + 0.5 e^- -> LiCoO_2$ (-) $LiC_6 -> 6C + Li^+ + e^-$

0.5 Li⁺ stored per unit CoO₂, this requires 0.5 C₆ \Rightarrow For $x = 0.5 M = M_{3C} + M_{CoO2} = 127 g/mol$ \Rightarrow Using $\varepsilon_{Cell} = 3.6 V$ it follows that *Energy density* = 1370 J/g = 380 Wh/kg

<u>This is only taking into account the weight of the electrodes,</u> Electrode additives, Electrolyte, separator, current collectors and packing: Energy density complete battery ~ *110 Wh/kg (~30%)*

12 March 2013

Energy density: amount of active material

Energy density for mobility

12 March 2013

74

Question Energy Density

26. Why do you think batteries in practice have relatively thin (~ max 50 μ m) electrodes?

- a) Difficult to make
- b) Long (dis)charge times
- c) Shorter cycle life
- d) No clue

http://www.edupinion.nl/c368

75

Question Energy Density

26 Why do you think batteries have in practice relatively thin electrodes?

- a) Difficult to make
- b) Long (dis)charge times
- c) Shorter cycle life
- d) No clue
- L: diffusion length: D: diffusion coefficient t: diffusion time

$$L \approx \sqrt{\pi Dt}$$
$$t \approx \frac{L^2}{\pi D}$$

12 March 2013

 $\sim 300 \ \mu m$

Practical questions

What is the direction of a redox reaction?
What is the voltage that a redox reaction can deliver?
What is the energy density of a battery?
What determines the cycle life of a battery
What is the power density of a battery? -> kinetics

Program Batteries

Lecture 1: Feb 27	History, Applications, basic Electrochemistry and thermodynamics of batteries: Redox reactions, Gibbs free energy, chemical potential, Nernst.	
Lecture 2: March 6	Solid state electrode reaction mechanisms, phase diagrams, phase rule Gibbs Free energy, voltage profiles, capacities and energy densities. Li-ion batteries	1
Lecture 3: March 13	Continue topics Lecture 2. Electrolyte stability: Pourbaix diagram, band structure solids, Cycle life.	
Lecture 4: March 20	Kinetics, Buttler-Volmer, diffusion, solid state diffusion Discussion on Science paper 6 seconds discharge.	
Lecture 5: March 27	Super capacitors Future systems: Li-air, Li-sulphur Flow-cells Batteries for static storage, NaS, Na aquous. Costs and Performance comparison batteries/systems Material Abundance	
12 March 2013		,

12 March 2013

Delft University of Technology

Home assignments

Read Chapters 3.1-3.3 Electrochemistry

Read Paper Ceder et al. Science (bb)

Exercise:

g(x) is the Gibbs Free energy of the cathode during discharge, assume the potential of the anode to be 0 and constant

- a) Sketch the voltage profile resulting from the Gibbs Free energy diagram
- b) In which direction with this reaction proceed
- c) Calculate the voltage of the voltage plateau('s) if any.
- d) Sketch a phase diagram that could represent this Gibbs Free energy diagram

Home assignment

g(x) is the Gibbs Free energy of the cathode during discharge, assume the potential of the anode to be 0 and constant

- a) Sketch the voltage profile resulting from the Gibbs Free energy diagram
- b) Which direction will this reaction proceed?
- c) Calculate the voltage of the voltage plateau('s) if any.
- d) Sketch a phase diagram that could represent this Gibbs Free energy diagram

b) In the direction of decreasing Gibbs Free energy: right

81