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Lecture 1: Introduction 
The first lecture gives an overview of the course and a general introduction to 
system identification and parameter estimation.  
System identification, in this course, tries to elucidate the dynamic relation 
between time-signals and to parameterize this relation in a mathematical 
model (where the model is based on differential equations). In this course the 
emphasis is on system identification in frequency domain. Key element of this 
approach is the Fourier transform. Major advantage of the frequency domain 
approach is that no a priori knowledge is required of the system (order and 
sources of noise). 
Every recorded time signal will be contaminated with noise. Noise is, by 
nature, a random process and consequently measured signals are stochastic. 
In stochastic theory not the individual realization is important but its statistical 
properties, e.g. mean, standard deviation, and also the probability density 
functions. The ergodicity concept states that one, sufficiently long, realization 
is representative for many other realizations. This implicates that it is 
sufficient to capture one recording of a signal to assess its (statistical) 
properties (in stead of multiple recordings). Cross-products and cross-
covariance functions are measures to estimate the relation between two 
(stochastic) signals in time-domain. The interpretation of these functions will 
be discussed in lecture 2. 

Topics: 

• System identification: signals vs. systems 
• Parameter estimation: what is a model? 
• Deterministic and stochastic signals 

• Stochastic theory and ergodicity 
• Probability density function 
• Fourier transform  

Selected readings: 

• Schoukens and Pintelon, Chapter 1 
• Optional: reader Signaalanalyse, Chapter 2, 5, 6, 7 

Lecture 2: Open loop identification 
This lecture gives the basics about system identification in frequency domain.  
In time domain, open loop systems can be investigated using transient 
deterministic signals or stochastic signals (e.g. white noise). The output of an 
open loop system is the convolution of the system’s impulse response 
function with its input. The Fourier transform of the impulse response function 
is called the transfer function or frequency response function (FRF). 
Advantage of the FRF is that it appears as an (algebraic) multiplication with 
the Fourier transform of the input signal. Thus, a convolution in time domain 
becomes a multiplication in frequency domain. 
Spectral density is defined as the Fourier transform of the covariance function. 
An estimator of the system’s FRF is obtained by dividing the cross spectral 



density by the auto spectral density of the input. In this case the input signal 
does not have to be white noise. Frequency response functions are 
graphically plotted in a Bode diagram, presenting gain and phase per 
frequency. To get an indication of the amount of noise at the system’s output 
the coherence function is used. The coherence varies between 0 and 1, where 
one indicates that there is no noise and thus that the system behaves linear 
while lower values indicate the presence of noise, either from external noise 
sources or from nonlinearities within the system. 

Topics: 

• Cross-products and cross-covariance functions 
• Time vs. frequency domain identification 

• Estimate frequency response function (FRF) of open loop systems 
• Coherence 

Selected readings: 

• Schoukens and Pintelon, Chapter 2 
• Optional: reader Signaalanalyse Chapters 8, 9, 10 
 

Lecture 3: Open- and closed loop identification 
This lecture gives a background on estimators in general and describes an 
estimator for systems that operate within a closed loop configuration. 
An estimator gives an estimate for a certain ‘true’ variable or function. 
Estimators are contaminated with errors which can be random (variance of 
the estimator) and/or structural (bias of the estimator). An accurate estimator 
has negligible bias and low variance. With a consistent estimator the variance 
of the estimator reduces with the number of samples used for averaging. 
Raw (non-averaged) spectral estimators are not consistent, i.e. with 
increasing observation time the resolution in frequency domain increases but 
the variance of this estimator remains equal. Furthermore using the raw 
estimators of the spectral density the estimator for the coherence is always 1. 
The variance of the estimator for the spectral density can be reduced by 
averaging over adjacent frequencies, but at the cost of frequency resolution! 
Using averaged spectral densities results in a better estimate for the FRF and 
coherence. Note that the coherence is always overestimated. 

Topics: 

• Theory on estimators 
• Properties of spectral estimators and coherence 
• Estimate frequency response function (FRF) of closed loop systems 

• Discuss the pitfalls when identifying closed loop systems 

Selected readings: 

• Optional: reader Systeemidentificatie A, Chapter 2 



Lecture 4: Time domain models 
Continuous systems can be approximated well by discrete time models. 
Discrete time models are in fact the regression coefficients of a discrete 
impulse response function. Having N discrete signal values, discrete models 
normally require far less regression coefficients (n<N) compared to FRFs (N). 
Major advantage of time domain models is that in the time domain noise can 
be separated from signals. Compared to the frequency domain where noise is 
mixed with the signal that requires a posteriori averaging, in the discrete time 
domain noise models are estimated a priori. Immediately, this a priori 
knowledge of the noise models is the main drawback since it requires some 
knowledge of the system’s structure which is often not known beforehand. 
In this lecture, different time domain models are presented. Besides the 
models are all linear input-output models, they are not all linear in their 
parameters (i.e. regression coefficients). Linearity in the parameters means a 
linear contribution of the parameters to the model error, which is typically the 
difference of the modeled output and the system’s output. Advantage of 
linearity in the parameters is that the model parameters can be obtained 
algebraically from the input and output signals only. Linearity in the 
parameters depends on the chosen noise model. E.g. ARX is linear in its 
parameters and ARMAX is nonlinear in its parameters. 
Two discrete closed loop estimators are presented (two stage and coprime 
factorization), both utilizing two open loop estimation steps but each in a 
different way. 

Topics 

• AR and MA basic model structures 

• Combinations of AR and MA system and noise models 
• Linearity in the parameters 
• Quadratic error criterion 
• Optimal model order selection 
• Closed loop estimators 

Selected readings: 

• Not yet decided 

Lecture 5: Discrete and continuous systems 
The distortional effect of sampling and signal reconstruction is presented. 
Sampling introduces additional high frequencies in the sampled signals while 
reconstruction acts as a low-pass filter. Both effects can be diminished by the 
choice of a sufficiently high sample frequency and the use of anti aliasing 
filters. 
The conversion from the continuous to the discrete time domain is explained. 
Conversion of models between the domains is performed by using the z-
transformation. 

Topics: 

• Sampling, reconstruction 



• Continuous Fourier spectrum of a sampled signal: spectral repetition 
• Discrete Fourier transform of a discrete signal of finite time 
• FRFs of discrete systems: spectral repetition also follows directly from the 

z transform 

Selected readings: 

• Optional: reader Signaalanalyse Chapters 3, 4 

Lecture 6: Perturbation signal properties 
In most cases system identification is a battle against noise. One should try to 
decrease the power of the noise and/or increase the power of the signal. 
Several methods exist to boost the power of the signal and such improve the 
signal-to-noise ratio (SNR). However random signals always introduce leakage, 
an effect of the observation time and resulting discrete frequency resolution. 
Multisine signals are composed of multiple sines. These deterministic signal do 
not introduce leakage and as the power is distribute over a limited number of 
frequencies the power per frequency can be high. With cresting, a technique 
to minimize the ratio between the outliers of the time and the standard 
deviation of the signal, the power can even be further increased. And the 
effect of the input signal on the system identification procedure is discussed. 

Topics: 

• Aliasing 
• Leakage 
• Signal-to-noise ratio (SNR) 
• Multisine signals 
• Cresting of multisine signals 

Selected readings: 

• Schoukens and Pintelon, Chapter 4 

Lecture 7: Multi-variable systems 
Multivariable systems 

Topics: 

• Multivariable systems 

Selected readings: 

• De Vlugt et al. Journal of Neuroscience Methods 122 (2003) 123-140 
 


