Solution for Exercise-sheet 2.1a

I. Principles of Quantum Mechanics

(I.1) (a) Calculate the de Broglie wavelength for an electron with kinetic energy of 1 eV .

Kinetic energy is expressed by

$$
\begin{equation*}
E=\frac{1}{2} m v^{2} \tag{1}
\end{equation*}
$$

It can be expressed by using momentum $p=m v$ as follows

$$
\begin{equation*}
E=\frac{p^{2}}{2 m} \tag{2}
\end{equation*}
$$

Substituting the equation in terms of the momentum into de Broglie wavelength equation: $\lambda=\frac{h}{p}$ gives

$$
\begin{equation*}
\lambda=\frac{h}{\sqrt{2 E m}} \tag{3}
\end{equation*}
$$

Substituting physical constants and kinetic energy into the equation 3 gives the following de Broglie wavelength:

$$
1.23 \times 10^{-9} \mathrm{~m}
$$

(I.2) An electron and a photon have the same energy. At what value of energy (in eV) will the wavelength of the photon be 10 times that of the electron?

Solution:

Kinetic energy E_{e} of an electron can be expressed using the de Broglie wavelength λe as

$$
\begin{equation*}
E_{e}=\frac{(h / \lambda e)^{2}}{2 m} \tag{4}
\end{equation*}
$$

Energy of a photon E_{p} can be expressed by using the wavelength λp

$$
\begin{equation*}
E_{p}=h \nu=h \frac{c}{\lambda p} \tag{5}
\end{equation*}
$$

The ratio of these wavelength was given by the question as follows

$$
\begin{equation*}
\lambda e=\frac{\lambda p}{10} \tag{6}
\end{equation*}
$$

Using the condition $E_{e}=E_{p}$ and substitution of the equation 6 result

$$
\begin{equation*}
h \frac{c}{\lambda p}=\frac{100 h^{2}}{2 m \lambda p^{2}} \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
\lambda p=\frac{100 h}{2 m c} \tag{8}
\end{equation*}
$$

Substituting this into equation 5 makes the energy for the both

$$
\begin{equation*}
E=\frac{m c^{2}}{50} \tag{9}
\end{equation*}
$$

Using the constants for electron mass m and light velocity c, we obtain $\underline{E=1.6 \times 10^{-15} \mathrm{~J}}$.
(I.3) The uncertainty in position is $12 \AA$ for a particle of mass $5 \times 10^{-29} \mathrm{~kg}$. Determine the minimum uncertainty in the momentum of the particle.

Solution:

The uncertainty in the momentum Δp can be obtained by using $\Delta x \times \Delta p \geq \hbar . \Delta x$ is given, thus: $\Delta p=\frac{1.054 \times 10^{-34}}{12 \times 10^{-10}}=\underline{8.78 \times 10^{-26} \mathrm{~kg} \times \mathrm{m} / \mathrm{s}}$

II. Wave

(II.1) Solution: $A \cos \frac{2 \pi}{\lambda} x$
(II.2) Solution: $A \cos \frac{2 \pi}{T} t$
(II.3) Solution: $A \cos \left(\frac{2 \pi}{T} t-\frac{2 \pi}{\lambda} x\right)$
(II.4) Solution: $\frac{A}{2}\left(\exp ^{j\left(\frac{2 \pi}{T} t-\frac{2 \pi}{\lambda} x\right)}+\exp ^{-j\left(\frac{2 \pi}{T} t-\frac{2 \pi}{\lambda} x\right)}\right)$
(II.5) Solution: The phase velocity $v=\frac{\lambda}{T}=\frac{\omega}{k}$

III. General Solution of Wave Function

(III.1)

Applying Euler's formula to the general solution (2) gives
$\psi(x)=A[\cos (|c| x)+j \sin (|c| x)]+B[\cos (|c| x)-j \sin (|c| x)]=(A+B) \cos (|c| x)+j(A-B) \sin (|c| x)$
Setting new constants:

$$
\begin{align*}
A+B & \rightarrow C \quad, \quad j(A-B) \rightarrow D \tag{11}\\
\psi(x) & =C \cos (|c| x)+D \sin (|c| x)
\end{align*}
$$

(III.2)
(a) If $E>V_{0}$,

$$
\begin{equation*}
\psi(x)=A e^{j K x}+B e^{-j K x} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi(x)=A \cos (K x)+B \sin (K x) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\sqrt{\frac{2 m}{\hbar^{2}}\left(E-V_{0}\right)} \tag{15}
\end{equation*}
$$

(b) If $E<V_{0}$,

$$
\begin{equation*}
\psi(x)=A e^{K x}+B e^{-K x} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)} \tag{17}
\end{equation*}
$$

(III.3) $\Psi(x, t)=\psi(x) \phi(t)=A \exp ^{j k x} \times \exp ^{-j \frac{E}{\hbar} t}=A \exp ^{j\left(k x-\frac{E}{\hbar} t\right)}$, where $k>0$, therefore the wave travels to the positive direction.

IV. Applications of Schrödinger's wave equation

(IV.1) An electron in free space is described by a plane wave given by $\Psi(x, t)=A e^{j(k x-\omega t)}$ where $k=1.5 \times 10^{9} \mathrm{~m}^{-1}$ and $\omega=1.5 \times 10^{13} \mathrm{rad} / \mathrm{s}$.
(a) Determine the phase velocity of the plane wave.
(b) Calculate the wavelength, momentum and kinetic energy (in eV) of the electron.

Solution:

(a) $k x-\omega t=$ constant, then

$$
\begin{gather*}
k \frac{\partial x}{\partial t}-\omega=0 \rightarrow \frac{\partial x}{\partial t}=v_{p}=\frac{\omega}{k} \tag{18}\\
v_{p}=\frac{1.5 \times 10^{13}}{1.5 \times 10^{9}}=10^{4}[\mathrm{~m} / \mathrm{s}]=10^{6}[\mathrm{~cm} / \mathrm{s}] \tag{19}
\end{gather*}
$$

(b)

$$
\begin{gather*}
k=\frac{2 \pi}{\lambda} \rightarrow \lambda=\frac{2 \pi}{k}=\frac{2 \pi}{1.5 \times 10^{9}}=\underline{41.9 \AA} \tag{20}\\
p=\frac{h}{\lambda}=\frac{6.625 \times 10^{-34}}{41.9 \times 10^{-10}}=\underline{1.58 \times 10^{-25}[\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}]} \tag{21}\\
E=\frac{1}{2} m v^{2}=\frac{1}{2} \frac{p^{2}}{m}=\frac{1}{2} \frac{\left(1.58 \times 10^{-25}\right)^{2}}{9.1 \times 10^{-31}}=\underline{1.37 \times 10^{-20} \mathrm{~J}\left(8.56 \times 10^{-2} \mathrm{eV}\right) .} \tag{22}
\end{gather*}
$$

