## Solution for Exercise-sheet 3

## I. Normalization of Schrödinger's wave function

(I.1) (a) Normalize the wave function to determine the constant A.

## Solution

$$
\begin{align*}
\int_{0}^{a}|\psi(x)|^{2} d x=1 & =|A|^{2} \int_{0}^{a}\left(\sin \frac{n \pi}{a} x\right)^{2} d x  \tag{1}\\
& =|A|^{2} \int_{0}^{a} \sin ^{2} \frac{n \pi}{a} x d x  \tag{2}\\
& =|A|^{2} \int_{0}^{a} \frac{1-\cos \frac{2 n \pi}{a} x}{2} d x  \tag{3}\\
& =|A|^{2}\left[\frac{1}{2} x-\frac{1}{4 n \pi} \sin \left(\frac{2 n \pi}{a} x\right)\right]_{0}^{a}  \tag{4}\\
& =|A|^{2} \times \frac{a}{2} \tag{5}
\end{align*}
$$

This yields

$$
\begin{equation*}
|A|=\sqrt{\frac{2}{a}} \tag{6}
\end{equation*}
$$

Therefore $A= \pm \sqrt{\frac{2}{a}}, \pm j \sqrt{\frac{2}{a}}$ or any complex number having the magnitute of $\sqrt{\frac{2}{a}}$
(b) What would be the time-dependent wave function?

## Solution:

$$
\begin{equation*}
\Psi(x, t)=\psi(x) e^{-i \frac{E}{\hbar} t}=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} e^{-i \frac{E}{\hbar} t}=\sqrt{\frac{2}{a}} \frac{\left\{e^{i\left(\frac{n \pi}{a} x-\frac{E}{\hbar} t\right)}-e^{-i\left(\frac{n \pi}{a} x+\frac{E}{\hbar} t\right)}\right\}}{2 i} \tag{7}
\end{equation*}
$$

## II. time-independent Schrödinger equation

(II.1)
(a) Calculate the first two energy levels that the electron may occupy.

Solution: $E_{n}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 m a^{2}}=n^{2} 4.179 \times 10^{-20} \mathrm{~J}=0.26 n^{2} \mathrm{eV}$
The 1st energy level $n=1, E_{1}=0.261 \mathrm{eV}$
The 2nd energy level $n=1, E_{2}=1.04 \mathrm{eV}$
(b) If an electron drops from the second energy level to the first, what is the wavelength of the photon that might be emitted?

Solution: $\lambda=\frac{h c}{E_{2}-E_{1}}=1.59 \times 10^{-6} \mathrm{~m}=1.59 \mu \mathrm{~m}$
(II.2) Consider the particle in the infinite potential well as shown in Figure.1.
(a) Using a boundary condition, derive an expression of the wave functions.
(b) Using the normalization, determine a constant of the amplitude of the wave function. The following formula could be used;


Figure 1: Potential function

$$
\begin{equation*}
\cos ^{2} x=\frac{\cos 2 x+1}{2} \tag{8}
\end{equation*}
$$

## III. time-independent Schrödinger equation

(III.1) For the 1D step potential function shown in Figure 1, assume that the total energy of electrons $E>V_{0}$ and that the electrons are incident from the +x direction traveling in the -x direction.
(a) Write the general solutions of time-independent Schrödinger's equation for each region.
(b) By applying boundary conditions, derive expressions for the transmission T and reflection coefficients R , respectively.

## Solution:

(a) For region II, $x>0$

$$
\begin{equation*}
\frac{\partial \psi_{2}(x)}{\partial x^{2}}+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi_{2}(x)=0 . \tag{9}
\end{equation*}
$$

General form of the solution is

$$
\begin{equation*}
\psi_{2}(x)=A_{2} e^{j K_{2} x}+B_{2} e^{-j K_{2} x} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{2}=\sqrt{\frac{2 m}{\hbar^{2}}\left(E-V_{0}\right)} \tag{11}
\end{equation*}
$$

Term with $B_{2}$ represents incident wave $(\leftarrow)$, and term with $A_{2}$ represents the reflected wave $(\rightarrow)$.
Region I, $x<0$

$$
\begin{equation*}
\frac{\partial \psi_{1}(x)}{\partial x^{2}}+\frac{2 m(E)}{\hbar^{2}} \psi_{1}(x)=0 . \tag{12}
\end{equation*}
$$

The general solution is of the form

$$
\begin{equation*}
\psi_{1}(x)=A_{1} e^{j K_{1} x}+B_{1} e^{-j K_{1} x} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}=\sqrt{\frac{2 m E}{\hbar^{2}}} \tag{14}
\end{equation*}
$$

The term involving $B_{1}$ represents the transmitted wave $(\leftarrow)$. If a particle is transmitted into region I, it will not be reflected so that

$$
\begin{equation*}
A_{1}=0 . \tag{15}
\end{equation*}
$$

Then

$$
\begin{gather*}
\frac{\psi_{1}(x)=B_{1} e^{-j K_{1} x}}{\psi_{2}(x)=A_{2} e^{j K_{2} x}+B_{2} e^{-j K_{2} x}} \tag{16}
\end{gather*}
$$

(b) Boundary conditions:

$$
\begin{equation*}
\psi_{1}(x=0)=\psi_{2}(x=0) \tag{1}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\left.\frac{\partial \psi_{1}(x)}{\partial x}\right|_{x=0}=\left.\frac{\partial \psi_{2}(x)}{\partial x}\right|_{x=0} \tag{18}
\end{equation*}
$$

Applying the boundary conditions to the solutions, we find

$$
\begin{gather*}
B_{1}=A_{2}+B_{2}  \tag{19}\\
K_{2} A_{2}-K_{2} B_{2}=-K_{1} B_{1} \tag{20}
\end{gather*}
$$

Combining these two equations, we find

$$
\begin{align*}
& A_{2}=\left(\frac{K_{2}-K_{1}}{K_{2}+K_{1}} B_{2}\right)  \tag{21}\\
& B_{1}=\left(\frac{2 K_{2}}{K_{2}+K_{1}} B_{2}\right) \tag{22}
\end{align*}
$$

The reflection coefficient is

$$
\begin{equation*}
R=\frac{A_{2} A_{2}^{*}}{B_{2} B_{2}^{*}} \rightarrow R=\left(\frac{K_{2}-K_{1}}{K_{1}+K_{2}}\right)^{2} \tag{23}
\end{equation*}
$$

The transmission coefficient is

$$
\begin{equation*}
T=1-R \rightarrow T=\frac{4 K_{1} K_{2}}{\left(K_{1}+K_{2}\right)^{2}} \tag{24}
\end{equation*}
$$

