Exercise Solid-State Physics (ET2908 and 8027) 2009-20010Q1: dr. R. Ishihara, DIMES-TC00.0044, r.ishihara@tudelft.nl

Exercise-sheet 4

I. The potential barrier

(I.1) Estimate the tunneling probability of an electron tunneling through a rectangular barrier with a barrier height V_0 of 1eV and a barrier width of 15Å. The electron energy is 0.20 eV.

II. The hydrogen atoms

(II.1)

(a) Calculate the energy of the electron in the hydrogen atom (in units of eV) for the first four allowed energy levels.

(b) When an electron jumps from a higher energy level to a lower energy level, a photon is emitted. Calculate a wavelength of the emitted photon for an electron jumping from n=3 to n=2.

(II.2) Let us now consider the time-independent Schrödinger equation for the two-dimensional hydrogen atom model:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = E\psi(\vec{r}),\tag{1}$$

where $\vec{r} = (x, y)$ and $\nabla^2 = (\partial/\partial x)^2 + (\partial/\partial y)^2$. $V(\vec{r})$ represents the coulomb potential of the proton and is given by

$$V(\vec{r}) = V(r) = -\frac{e^2}{4\pi\epsilon_0 r},\tag{2}$$

where $r = \sqrt{x^2 + y^2}$, *e* is the charge of electron, and ϵ_0 is the permittivity of vacuum. Using cylindrical coordinates (r, θ) the ∇^2 operator can be expressed as

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$
 (3)

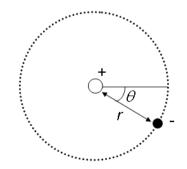


Figure 1: Two-dimensional model of the hydrogen atom.

(a) Substitute Eqs. (2) and (3) into Eq. (1) and derive the Schrödinger equation in cylindrical coordinates.

(b) Let us assume that ψ does not depend on θ . How does this assumption simplify the Schrödinger equation?

(c) Now try a function of the type $\psi(r) = e^{-\eta r}$. For which value of η is this a correct solution?

(d) Find the corresponding value for the energy.