Exercise Solid-State Physics (ET2908 and ET3175-D1) 2008-2009Q1: dr. R. Ishihara, DIMES-TC1.06, r.ishihara@tudelft.nl

Solution for Exercise-sheet 4

I. The potential barrier

(I.1) Estimate the tunneling probability of an electron tunneling through a rectangular barrier with a barrier height V_{0} of 1 eV and a barrier width of $15 \AA$. The electron energy is 0.20 eV .

Solution:
$K_{2}=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}=\left(\frac{2\left(9.11 \times 10^{-31}\right)(1-0.2)\left(1.6 \times 10^{-19}\right)}{\left(1.054 \times 10^{-344}\right)^{2}}\right)^{\frac{1}{2}}=4.58 \times 10^{9} \mathrm{~m}^{-1}$
$T \cong 16\left(\frac{0.2}{1}\right)\left(1-\frac{0.2}{1}\right)\left[-2\left(4.58 \times 10^{9}\right)\left(15 \times 10^{-10}\right)\right]=2.76 \times 10^{-6}$

II. The hydrogen atoms

Time-independent Schrödinger equation for the 2D hydrogen atom

(II.1)

Solution:

In cylindrical coordinates the Schrödinger equation for the 2D hydrogen atom is written as

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right) \psi(r, \theta)-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi(r, \theta)=E \psi(r, \theta) .
$$

(II.2)

Solution:
If ψ does not depend on θ, i.e. $\psi=\psi(r)$, then $\partial \psi / \partial \theta=0$. Substitution in the above equation gives

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2} \psi(r)}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi(r)}{\partial r}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi(r)=E \psi(r) .
$$

(II.3)

Solution:

We next try $\psi(r)=e^{-\eta r}$ as a solution. The result is

$$
-\frac{\hbar^{2}}{2 m}\left[\eta^{2} e^{-\eta r}-\frac{\eta}{r} e^{-\eta r}\right]-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r} e^{-\eta r}=E e^{-\eta r}
$$

or

$$
\left(-\frac{\hbar^{2} \eta^{2}}{2 m}-E\right) e^{-\eta r}+\left(\frac{\hbar^{2} \eta}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0}}\right) \frac{1}{r} e^{-\eta r}=0 .
$$

Since this relationship should be valid for every r, the both terms in the two brackets should vanish, so that;

$$
\begin{equation*}
E=-\frac{\hbar^{2} \eta^{2}}{2 m}, \eta=\frac{2 m e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} . \tag{II.4}
\end{equation*}
$$

Solution:

From previous equations one finds that

$$
E=-\frac{m e^{4}}{8 \pi^{2} \epsilon_{0}^{2} \hbar^{2}}=\underline{-54.4 \mathrm{eV}} .
$$

The hydrogen atom

(II.5) (Question 2.39 of the Neaman book Chapter 2 page 55)

Solution: For the $1 s$ state ($n=1, l=0$ and $m=0$), the wave function is given by

$$
\psi_{100}=\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \exp \left(\frac{-r}{a_{0}}\right)
$$

(page 47 equation 2.73), where the a_{0} is the Bohr radius and hence the RADIAL probability $P(r)$

$$
P(r)=4 \pi r^{2} \psi_{100} \psi_{100}^{*}=4 \pi r^{2} \frac{1}{\pi}\left(\frac{1}{a_{0}}\right)^{3} \exp \left(\frac{-2 r}{a_{0}}\right)
$$

or

$$
P(r)=\frac{4}{\left(a_{0}\right)^{3}} r^{2} \exp \frac{-2 r}{a_{0}} .
$$

Note that the differential volume of the shell around the nucleus is multiplied to the product of $\psi_{100} \cdot \psi_{100}^{*}$. To find the maximum probability

$$
\begin{gathered}
\frac{d P(r)}{d r}=0 \\
=\frac{4}{\left(a_{0}\right)^{3}}\left[r^{2}\left(\frac{-2}{a_{0}}\right) \exp \left(\frac{-2 r}{a_{0}}\right)+2 r \exp \left(\frac{-2 r}{a_{0}}\right)\right]
\end{gathered}
$$

which gives

$$
\begin{gathered}
0=\frac{-r}{a_{0}}+1 \\
\underline{r=a_{0}}
\end{gathered}
$$

$r=a_{0}$ is the radius that gives the greatest probability.

