Exercise Solid-State Physics (ET2908 and 8027) 2009-20010Q1: dr. R. Ishihara, DIMES-TC00.0044, r.ishihara@tudelft.nl

Solution for Exercise-sheet 6

I. Electrical Conduction in Solids

(I.1)

Solution

E versus k has a parabolic relationship.

$$
\begin{gather*}
E_{V}-E=\frac{k^{2} \hbar^{2}}{2 m} \tag{1}\\
k=0.1\left[\AA^{-1}\right]=10^{9}\left[\mathrm{~m}^{-1}\right] \tag{2}
\end{gather*}
$$

For the curve A:

$$
\begin{equation*}
(0.07)\left(1.6 \times 10^{-19}\right)=\frac{\left(10^{9}\right)^{2}\left(1.054 \times 10^{-34}\right)^{2}}{2 m} \tag{3}
\end{equation*}
$$

which yields

$$
\begin{equation*}
m_{A}=4.96 \times 10^{-31}[\mathrm{~kg}] \rightarrow \frac{m_{A}}{m_{0}}=0.544 \tag{4}
\end{equation*}
$$

For the curve B:

$$
\begin{equation*}
(0.7)\left(1.6 \times 10^{-19}\right)=\frac{\left(10^{9}\right)^{2}\left(1.054 \times 10^{-34}\right)^{2}}{2 m} \tag{5}
\end{equation*}
$$

which yields

$$
\begin{equation*}
m_{B}=4.96 \times 10^{-32}[\mathrm{~kg}] \rightarrow \frac{m_{B}}{\underline{m_{0}}}=0.0544 \tag{6}
\end{equation*}
$$

(I.2)

Solution:

Points A, B: $\frac{\partial E}{\partial k}<0$, which means velocity in -x direction
Points C, D: $\frac{\partial E}{\partial k}>0$, which means velocity in +x direction
Points A, D: $\frac{\partial^{2} E}{\partial k^{2}}<0$, which means negative effective mass;
Points B, C: $\frac{\partial^{2} E}{\partial k^{2}}>0$, which means positive effective mass.
(I.3) (a) (b) $\partial E / \partial k$ and $\partial^{2} E / \partial k^{2}$ versus k can be plotted as Figure 1.
(c) The effective mass as a function of k is plotted as Figure ??. Curve A: Effective mass is a constant. (Free electron belongs to this case) Curve B: Effective mass has a positive around $k=0$ and increases to infinite positive at $k= \pm \frac{\pi}{2 a}$. The mass is negative around $k= \pm \frac{\pi}{a}$ and decreases to infinite negative around $k= \pm \frac{\pi}{2 a}$.

Figure 1: $\partial E / \partial k$ and $\partial^{2} E / \partial k^{2}$ versus k of Figure 3.39 in Neaman page 100

Figure 2: Effective mass versus k of Figure 3.39 in Neaman page 100

