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History of Physics

• Christian Huygens on wave nature of light (~1678)
• Newton’s Principia for mechanics (~1687)
• Maxwell’s A Dynamic Theory of the Electromagnetic 

Fields (~1864)
• Electron was discovered in 1897 (J.J. Thomson)
• A few strange phenomena had to be resolved, but that 

would be a matter of time
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Key points of this chapter

• Where and why did classical mechanics fail?
• Photoelectric effect: photons behave as particles
• Duality principle of de Broglie
• Davisson-Germer experiment
• Uncertainty relation of Heisenberg
• Schrodinger’s Wave equation
• Pauli’s exclusion principle
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h= Planck’s constant

6,625*10-34 Js

Proposed that electromagnetic 
energy is emitted only in 
quantized form and is always 
a multiple of smallest unit 
E=hѵ, where ѵ is the 
frequency of emitted radiation. 
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In 1900: 

Experimental setup for the study of photoelectric effect
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Observations of photoelectric effect

Photoelectric effect The maximum kinetic energy of 
photoelectrons as a function of 
incident frequency.
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Observations :

•When monochromatic light is incident on a clean surface of a material 
photoelectrons are emitted from the surface.

•According to classical physics, if light intensity is high enough to 
overcome work function, photoelectron should be emitted. But this is not 
always observed.

•Max kinetic energy (Tmax) 
of electron

Frequency of incident light
Ѵ > Ѵ0

•Rate of photoelectron 
emission

intensity of incident light
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Einstein’s explation

• Light behaves as a particles that transfers its energy to an 
electron

• The energy of a light particle (photon) is E=hν
• The energy in excess of workfunction (2-5 eV) is converted 

into kinetic energy of the photoelectrons.

    where hѵ0 is the work function of the material

But if a photon can behave as a particle, is it also possible 
that a particle can behave as a wave?



Department of Microelectronics & Computer Engineering

8

Who & where?

Someone was thinking about it… 

Can we express 
momentum in terms 

of wavelength?

de Broglie was a telecom 
engineer who spent most of 
his time on top of the Eiffel 
tower thinking about waves !
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Louis Victor Pierre Raymond 
duc de Broglie

Born: 15 Aug 1892 in Dieppe, 
France

Died: 19 March 1987 in Paris, 
France

Louis de Broglie (1892 – 1987)
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Wave-particle duality principle

From Einstein’s special theory of relativity, momentum of 
a photon is given by -

p=h/λ

de Broglie Hypothesized that wavelength of all 
particles can also be expressed as –

λ=h/p

This is the duality principle of de Broglie
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Let us look at Bragg's Law first: light interfering with a single 
crystal

Based on the angle of incidence of light, there is either 
constructive interference or destructive interference.
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Instead of light, what if we 
use a particle beam such as 
electrons?

Experimental arrangement of Davisson- 
Germer experiment (1927)
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Result similar to 
Bragg reflection 
(interference)

Scattered electron flux as a function of 
scattering

Davisson Germer Experiment
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Werner Heisenberg 1901-1976

Friend of Bohr, who was 
important for nuclear 
program of allies

Head of German nuclear 
war program.

Did he do intentionally 
miscalculations?
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Heisenberg’s uncertainty principle (1927):

the Heisenberg uncertainty principle states that locating a 
particle in a small region of space makes the momentum of the 
particle uncertain; and conversely, that measuring the 
momentum of a particle precisely makes the position uncertain. 

In formula:



≥∆∆
≥∆∆

tE
xp

So we can only express things in terms of probabilities!!!

http://en.wikipedia.org/wiki/Werner_Heisenberg
http://en.wikipedia.org/wiki/Momentum
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Probability

Probability is the likelihood that an 
event will occur. In our present 
discussion, probability refers to the 
likelihood of finding an electron at a 
certain position

Probability density function (pdf) is a function which gives the 
probability distribution for all possible locations.

Example : Imagining a one dimensional confinement of 
electron, if [z0,z4] is the set of all possible locations, then f(z) 
as shown in figure can be the pdf of the electron location.



Department of Microelectronics & Computer Engineering

17

Probability

When the set of all possible 
locations is a continuous range as in 
this example, the probability of 
finding the electron at one 
particular location is zero.

But the probability of finding the electron in a small range say 
between z1 and z1+dz is finite and is given by f(z1)dz

Since the electron is confined between z0 and z4,

∫ =
4

0

1)(
z

z

dzzf
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Schrodinger introduced the 
wave function for any 
particle, which was later 
interpreted as the square-
root of probability density 
function of finding the 
particle at a particular 
position.
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SCHRODINGER’S WAVE EQUATION

One-dimensional Schrodinger’s wave equation-

Where Ψ(x,t) is the wave function, V(x) is the potential 
function experienced by the particle, m is the mass of the 
particle and ħ=h/2Π
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Potential function

Potential here refers to the potential of the electron (electronic 
potential). 

Example : electronic potential of an atom on an electron

Potential function of an isolated atom
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How to solve the wave equation? 

Separation of variables:

= CONSTANT = η

Substituting this form into the Schrodinger’s equation :

Hence we have two differential equations each having one variable only
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ħ ω =η, Comparing with equation E=hѵ,  
η  is the  TOTAL energy E of the 
particle

This is an oscillation with radian frequency η/ ħ ⇒ ω  = η/ ħ

tj
et




−
=Φ 

η

)(
Time dependent portion of 
wave function
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The time-independent Schrödinger wave equation (TISE)

From previous slide, η = E

∴

Therefore
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Hypothesis of Born (1926):

|Ψ (x,t)|2dx is the probability that the 
particle can be found in the  

interval [x , x + dx]  

The time dependent wave function is -

Physical meaning of the wave function
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Important potential functions 

We first apply Schrodinger’s equation to some simple situations, 
the results of which will be used to analyze more complicated cases 
later.

a) Electron in free space, b) The step potential function, c) The infinite 
potential well and d) The barrier potential function

•

 (a)                     (b)                         (c)                                (d)        
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Boundary Conditions
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“Probability 
integral” is 

infinity

Different probability 
at the same position

Different probability
 for left to right 

and for right to left.
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Before solving the Schrodinger’s wave equation it is helpful to 
consider general solutions for-
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•

⇒ Potential energy V = 0

Applications of Schrodinger’s wave equation

Electron in free space

Referring to previous 

slide, 
mEc 2=
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Time dependent wave function is then -

( )tEjet −=)(ϕ

This is the equation for a travelling wave.
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Hence a particle with a well 
defined energy also has a well 
defined wavelength and 
momentum

General expression for a travelling wave is -

From previous solution, 

mEk 2=
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The Infinite Potential Well

Potential function of the infinite potential well
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TISE ⇒

V(x)∞ and E finite,    so Ψ(x)=0 in regions I and III

In region II, where V(x)=0, TISE reduces to -
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To satisfy boundary condition that Ψ(x) is continuous
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= 0 ⇒
= 0 ⇒

This results in Ka = n π,
         or    K = n (π/a)

with n = 1, 2,…….

K = 2 π /λ = n (π/a)
½λ = a/n 
with n = 1, 2,…….

 A1 = 0
A2 sin Ka = 0

⇒ψ (x) = A2 sin{ n     x}a
π

½λ

½λ

½λ

½λ
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and
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ψ (x) = A2 sin Kx  real function

Since particle can only exist between x=0 and x=a,

∫ =ΨΨ
a

dxxx
0

* 1)()(
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⇒
a

j
a

A 2,2
2 ±±=

Any of these values  same conclusions

For simplicity we take 
a

A 2
2 +=
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Particle in an infinite potential well

a) Four lowest discrete energy levels, b) corresponding 
wave functions and c) corresponding probability functions
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The Step Potential Function

Energy of incident 
particle E < V0
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TISE 

In region I, V=0  
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)(

1
1 txkj

eA 
η−

In
A given phase moves towards +x as time 
progresses  wave travelling in +x direction

)(

1
1 txkj

eB 
η+−

Similarly wave travelling in -x direction
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In region II, V=V0 and we assume E<V0
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∞→Ψ   x aseven  finiteremain must  )(2 x
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Reg I ⇒

Reg II ⇒


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The first derivatives of the wave 
functions must also be continuous at x=0
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Two equations and three unknowns ! So we cannot solve for all three 
but we can express two co-efficients in terms of the remaining one. 

⇓
⇓
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What is the form of ψ1  and ψ2?

Potential barrier Wave function at potential barrier
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The probability density function of the reflected wave is -
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Reflection coefficient = R = 
flux 
flux 

incident
reflected

Where vi and vr are the velocities of incident and reflected waves.

*
11

*
11

..

..
AAv
BBvR

i

r=

Now,  and E=1/2mv2 when V=0

Since K1 applies to both incident and reflected waves in x ≤ 0,

vr=vi
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Total reflection at an 
arbitrary step function V0,

if E<V0
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Transmitted wave co-efficient A2=A1+B1,  hence A2 is not equal 
to 0

pdf |Ψ2(x)|2  of finding the particle in region II is not zero

There is finite probability that incident particle will penetrate 
the potential barrier and exist in region II.

But since reflection coefficient is 1, all particles in region II 
will eventually turn around and move back into region I.

Quantum mechanical snooker!!!
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The potential barrier
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Reg.I:

Reg.II:

Reg.III:

( since regions I and III are K3=K1)



Department of Microelectronics & Computer Engineering

57

Boundary conditions:
ψ3  can have component only in +x direction

At x = 0:

ψ2(a) = ψ3(a); 

(0) (0)
x x

21    ψ ψ∂ ∂
∂ ∂

=

a a)
x x

32    ψ ( ) ψ (∂ ∂
∂ ∂

=

At  x = a:

hence B3 = 0;

ψ1 (0) = ψ2 (0);
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• We can see that T is not zero, a result which cannot be 
explained from classical physics

•T is exponentially dependent on a. Thinner the barrier, 
higher is the transmission co-efficient.
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Extension of wave theory to atoms.

• For simplicity potential function of one electron atom or 
hydrogen atom is considered.

•Schrodinger’s wave equation to be solved in three 
dimensions.

•Potential function is spherically symmetric  so use 
spherical co-ordinates.
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The spherical co-ordinate system



Department of Microelectronics & Computer Engineering

62

CARTESIAN COORDINATES

1D:

3D:
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TISE in spherical 
co-ordinates

Expanding the laplacian operator the TISE in spherical 
co-ordinates is -

( ) 0)(2.sin.
sin
1.

sin
1.1

2
0

22

2

22
2

2 =Ψ−+


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Separation of variables ( ) )()()(,, ϕθϕθ ΦΘ=Ψ rRr

  Substituting this form of solution, the TISE is - 

( ) 02sin.sin.sin.1.sin
2

022
2

2
2

2

=−+






∂
Θ∂

∂
∂

Θ
+

∂
Φ∂

Φ
+







∂
∂

∂
∂ VEmr

r
Rr

rR 
θ

θ
θ

θ
θ

ϕ
θ

Each term is a function of only one of r, θ and φ. Grouping 
terms of the same variable and equating to a constant we 
can get three equations. 
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ϕ

ϕ
jmem =Φ⇒−=

∂
Φ∂

Φ
      .1 2

2

2

The equation for φ can be written as - 

Wave function should be single valued  m=0,±1, ±2, ±3



Department of Microelectronics & Computer Engineering

66

Similarly the equations in r and θ can be solved in terms of 
constants n and l. The separation of variables constants n, 
l and m are known as principal, azimuthal (orbital) and 
magnetic quantum numbers and related by – 

n=1,2,3…    l=n-1,n-2,n-3,…0   |m|=l,l-1,…,0

Each set of quantum numbers  a quantum state which 
an electron can occupy
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Electron energy can be written as –

( ) 222
0

4
0

24 n
emEn π ε

−=

• Energy is negative  electron is bound to nucleus

• n is integer  Energy can have only discrete values.

• electron being bound in a finite region of space  
quantized energy

where m0 is the electron mass and n is the principal quantum number.
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For the lowest energy state, n=1, l=m=0 and the wave 
function is given by -

The value of r  for which the probability of 
finding the electron is maximum is -

Bohr radius
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Radial probability density function for the one-electron atom for a) n=1, 
l=m=0 and b) n=2, l=m=0.

• Radius of second energy shell > radius of first energy shell
• finite (but small) probability that this electron can be at 
smaller radius. 
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One more quantum number !

Every electron has an intrinsic angular momentum or spin. This 
spin is quantized, designated by spin quantum number s and take 
values +1/2 or -1/2
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Pauli Exclusion Principle

“no two electrons in any given system (atom, molecule 
or crystal) can have the same set of quantum numbers”

• This principle not only determines the distribution of 
electrons in an atom but also among the energy states 
in a crystal as will be seen later.



Department of Microelectronics & Computer Engineering

72

• In 1869 Mendeleev demonstrated that a periodic 
relationship existed between the properties of an element 
and its atomic weight.

•But it was only quantum mechanics which provided a 
satisfactory explanation for the periodic table of elements.

•Each row in the periodic table corresponds to filling up of 
one quantum shell of electrons.

Periodic Table
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Initial portion of the periodic table

From the concept of quantum numbers and Pauli exclusion 
principle we can explain the periodic table.



Department of Microelectronics & Computer Engineering

74

• Hydrogen  single electron in lowest energy state (n=1,l=m=0). However 
spin can be +1/2 or -1/2

•Helium  two electrons in lowest energy state and this shell is full. Valence 
energy shell (which mainly determines the chemical activity) is full and hence 
helium is an inert element.

•Lithium  three electrons. 3rd electron must go into second energy shell 
(n=2)

•When n=2, l=0 or 1 and when l=1, m=0,±1. In each case s=±½. So this 
shell can accommodate 8 electrons.

•Neon has 10 electrons and hence the n=2 shell is also full making neon also 
an inert element.

•Thus the period table can be built. At higher atomic numbers, the electrons 
begin to interact and periodic table deviates a little from the simple 
explanation.
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