History of Physics

 Christian Huygens on wave nature of light (~1678)
* Newton’s Principia for mechanics (~1687)

 Maxwell’'s A Dynamic Theory of the Electromagnetic
Fields (~1864)

* Electron was discovered in 1897 (J.J. Thomson)

* A few strange phenomena had to be resolved, but that
would be a matter of time
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Key points of this chapter

 Where and why did classical mechanics fail?

* Photoelectric effect: photons behave as particles
* Duality principle of de Broglie

* Davisson-Germer experiment

* Uncertainty relation of Heisenberg

* Schrodinger’s Wave equation

 Pauli’s exclusion principle
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h= Planck’s constant
6,625*%1034Js

Proposed that electromagnetic
energy is emitted only in
quantized form and is always
a multiple of smallest unit
E=h0, where 0 is the
frequency of emitted radiation.

Max Planck (1858-1947).
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Light
In 1900: Quartz window o

Experimental setup for the study of photoelectric effect
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Observations of photoelectric effect

Incident Photoelectron
monochromatic kinetic
light energy =T

ot e e 8 Bk e 4
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A = i 3 e oW g
o % e o T s e el LR
= 2 e = e BN

Bt 5 i e E A

o

Maximum kinetic energy, T,

(a) ' (b)

Photoelectric effect The maximum kinetic energy of
photoelectrons as a function of
incident frequency.
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Observations :

*When monochromatic light is incident on a clean surface of a material
photoelectrons are emitted from the surface.

*According to classical physics, if light intensity is high enough to
overcome work function, photoelectron should be emitted. But this is not
always observed.

*Max kinetic energy (T,..) .. Frequency of incident light
of electron O > 04,

*Rate of photoelectron - intensity of incident light
emission
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Einstein’s explation

* Light behaves as a particles that transfers its energy to an
electron

* The energy of a light particle (photon) is E=hv

* The energy in excess of workfunction (2-5 eV) is converted
into kinetic energy of the photoelectrons.

L 5

Tax = -imv = hv — hyvg (v = vg)

where hl, is the work function of the material

But if a photon can behave as a particle, is it also possible
that a particle can behave as a wave?
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Someone was thinking about it...

Can we express
momentum in terms
of wavelength?

Who & where?

de Broglie was a telecom
engineer who spent most of
his time on top of the Eiffel
tower thinking about waves !
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Louis Victor Pierre Raymond
duc de Broglie

Born: 15 Aug 1892 in Dieppe, |
France :

Died: 19 March 1987 in Paris,
France

Louis de Broglie (1892 — 1987)
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Wave-particle duality principle
From Einstein’s special theory of relativity, momentum of
a photon is given by -

p=h/A

de Broglie Hypothesized that wavelength of all
particles can also be expressed as —

A=h/p
This is the duality principle of de Broglie
e
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Let uslook at Bragg'sLaw first: light interfering with asingle
crystal

Incident

plane wawe

i
L]
L
L]

1
-

-

-
-

2d sin 8

Constructive interference
when

® o o o o o nA=2dsinB
Bragg's Law

Based on the angle of incidence of light, there is either
constructive interference or destructive interference.
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Sample

Azimuthal
angle b
Electron beam /

A ,

\
AN

Instead of light, what if we [
use a particle beam such as eiccin
electrons?

Galvanometer

Experimental arrangement of Davisson-
Germer experiment (1927)
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Davisson Germer Experiment

Sample
Incident electron beam
> I !
0=0 \ \
! ~
\
\ \ .
N N Result similar to
\ B Bragg reflection
Sl . (interference)
0 = 45¢
0 = 90°

Scattered electron flux as a function of
scattering
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Werner Heisenberg 1901-1976

Friend of Bohr, who was
important for nuclear
program of allies

Head of German nuclear
war program.

Did he do intentionally
miscalculations?
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Heisenberg’s uncertainty principle (1927):

the Heisenberg uncertainty principle states that locating a
particle in a small region of space makes the momentum of the
particle uncertain; and conversely, that measuring the

momentum of a particle precisely makes the position uncertain.

Aphx> [

. bBpP -
In formula: NEbgs T /)Uf.: %y‘/a M,-‘.’/L?a/

So we can only express things in terms of probabilities!!!
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http://en.wikipedia.org/wiki/Werner_Heisenberg
http://en.wikipedia.org/wiki/Momentum

Probability

Probability is the likelihood that an /_;é
event will occur. In our present =
discussion, probability refers to the

0.0

likelihood of finding an electron at a
certain position

Probability density function (pdf) is a function which gives the
probability distribution for all possible locations.

Example : Imagining a one dimensional confinement of
electron, if [z,,z,] is the set of all possible locations, then f(z)

as shown in figure can be the pdf of the electron location.
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Probability

When the set of all possible
locations is a continuous range as in =t
this example, the probability of i
finding the electron at one .

particular location is zero.

But the probability of finding the electron in a small range say
between z, and z,+dz is finite and is given by f(z,)dz

Since the electron is confined between z, and z,,
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particle, w

particle at
position.

Erwin Schrodinger (1887-1961).

Schrodinger introduced the
wave function for any

nich was later

interpreted as the square-
root of probability density
function of finding the

a particular
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SCHRODINGER’S WAVE EQUATION

One-dimensional Schrodinger’s wave equation-

—#% %W (x, 1) W (x, 1)
' { lp , — ; P
2m dx? VWi, 1) = jh ot

Where W(x,t) is the wave function, V(x) is the potential
function experienced by the particle, m is the mass of the
particle and h=h/2I1
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Potential function

Potential here refers to the potential of the electron (electronic
potential).

Example : electronic potential of an atom on an electron

electron
@ /

(a)

Potential function of an isolated atom
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How to solve the wave equation?

Separation of variables: (x, ¢) = Y (x)p(1)

Substituting this form into the Schrodinger’s equation :

- 1 Py oo 1 36
o2m ¥(x) ox2 Vi) = jh- o) ot
= CONSTANT =n

| Hence we have two differential equations each having one variable only|
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I d9@)

— it . :
T T
= Time dependent portion of
d(t)=e Gl ” wave function

This is an oscillation with radian frequency n/h 0 @ =n/h

h w=n, Comparing with equation E=h[],
N isthe TOTAL energy E of the
particle
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From previous slide, n = E

—#2 1 () |

Therefore % . W(x) : ™ FV(x)=F
3% (x) 2m
2 T 73 (E=Vx)Nyx)=0

The time-independent Schrodinger wave equation (TISE)
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Physical meaning of the wave function

The time dependent wave function is -

W(x, 1) = Y (0)p(0) = Y (x)e” ! EM

Hypothesis of Born (1926):

¥ (x,8)| dx is the probability that the
particle can be found 1n the

interval [x , x + dx]
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W (x, 1)]* = W(x, t) - U*(x, 1)
W(x , Y (1) = [ o)e ™ EM [y (x)et EMN
= P ()P ™ (x)
W (x, )" = Y @) Y™ x) = [¥ @)
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Important potential functions

We first apply Schrodinger’s equation to some simple situations,
the results of which will be used to analyze more complicated cases
later.

Vix) Vix)
i

o] ~oi ~aion 111
Region I Region II Region 111 egon | Reglon i Region

Region 1 Region II

(a) (b) (c) (d)

a) Electron in free space, b) The step potential function, ¢) The infinite
potential well and d) The barrier potential function
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Boundary Conditions

Condition 1. ¥ (x) must be finite, single-valued, and continuous.

Condition 2. 9y (x)/dx must be finite, single-valued, and continuous.
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Examples of functions that are[not| well-behaved. (a) A function that becomes infinite
at x = x,. (b) A function that is not single-valued everywhere. (¢) A function with a

discontinuity at x = x,.

|

|

|

e e

t

|

1

1

b X

!
\

|
|
|
|
|
|
|
i
I
I
|

.'to 0
o (b) T ©) S
“Probability Different probability Difffer fin; Probazility
. ” : ition or lett to right
mjtegra.l ® at the same pos and for right to left.
infinity
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Before solving the Schrodinger’s wave equation it is helpful to
consider general solutions for-

0% (x)
Ox?

When —¢? > 0

() =0

() = Aedldl 1 Be—ilels

Y(x) = Asin(|c|z) + B cos(|c|x)
When —c? < 0
Y(xr) = Ae™ + Be™
- T
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Applications of Schrodinger’s wave equation

Electron in free space [1 Potential energy V =0

dx2

32
T T - V() =0

821//( ) Referring to previous
X) = J2mE
dx? [ ﬁ2 W( )= slide, =g
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_jx«/ZmE B —jx\/ZmE_
p - B exp

Y (x) = Aexp

p (1) e_j(%)t

Time dependent wave function is then -

lIJ(x,r):Aexpl: (xvV2mE Et)] + B exp l:—-—(x\/2 +EI)}

This is the equation for a travelling wave.
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General expression for a travelling wave is -

. 27
‘IJ(JC, Z) :Aexp[j(kx—a)t)] k= T
\N2mE
]

From previous solution, % =

Hence a particle with a well
defined energy also has a well
defined wavelength and
momentum
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The Infinite Potential Well

V(x)
F

—T1 3
-t

Region | Region IT Region I1I

|

x=0 X=ga

Potential function of the infinite potential well
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TISE O E;Z(X) | (E Vo) (x) =0

V(x)>00 and E =>finite, so W(x)=0 in regions I and III

In region II, where V(x)=0, TISE reduces to -
: : 8210 (JC)
dx2

x=0 X=a
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Y{x) = A1 cos Kx+ Arsin Kx
B  [2mE

Region I Region I Region 111 ﬁ 2

To satisfy boundary condition that W(x) is continuous

Yyx=0)=y¢y(x=a)=0
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Y(x)=A1cos Kx+ Arsin Kx

boundary condition at - --
Yyax=0 =00 A =0
v(x=a)=00 A,sinKa=0

This results in Ka = n 7T
oo K=n (7761)

withn=1,2,.......

K=27T/A = n (T7a)

YA = a/n O@(x)=A, sin{n%x}

withn=1, 2, x=0  x=a
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K="
é:?=4 d ﬁ
15—
T - 2mE  nrm?
T8 0 h? a*
‘*Fa n=73
s

~ hin’m?
5 n=2 E — EH —

2ma?

A n=1273,...
R AN
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Since particle can only exist between x=0 and x=a,

JC'ILIJ (X)¥ "(x)dx = 1

0

o W (x) = A, sin Kx = real function
T T
: : Y (x) = ¢¥*(x)
Region I Region II Region 111 a
/ A% sin” Kxdx = 1
0

x=0 X=a
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Any of these values - same conclusions

For simplicity we take 4, - + \E
a

Y(x) =,/ —smKx
a
W (x) = ﬁsin(@)
~V g p n=1,2,3,..
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Particle in an infinite potential well

,,,,,

- ) ——
|1 ]

I
2ma“
=)

n =73

|1|JHJ2 —_—

E (units of

(a) (b) (c)

a) Four lowest discrete energy levels, b) corresponding
wave functions and c) corresponding probability functions
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The Step Potential Function

Py 2 Y ) = 0 Energy of incident

W particle E < V,

Incident particles
_._—._.».

Vo
in region I, in which V =0 | In region II, the potential is V = Vj

Region | Region II
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nse s> VW

| (E Vv x) =

dx2
| 3% (x)
In region I, V=0 > 2 | ﬁz wl(x) =
Vi) = A1e/ D 4 Bre /B <0) Ky = 2_:;;
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Alejle >
Ble—jle < V(x)
A
Incident particles
_._.__._.».
Vo
Region | Region II
x=0
In A ej(klx'nﬁt) A given phase moves towards +x as time
1 progresses - wave travelling in +x direction
.. -kt L o L
Similarly B¢ """ —>  wave travelling in -x direction
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In region II, V=V, and we assume E<V,

0~ 2
P Vo~ Eya() =0

Yo (x) = Age X 4 Bre™ 2% (x > 0)

2m(Vo — E)
K2 = \/ 72
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in region I, in which V =0

Yi(x) = Aedr 4 B1e_@K1x(x <0) =%

ﬁ2

In region 1I, the potential is V = Vy.  p _ Vo

Yo (x) = Age X 4 Bre™ 2% (x > 0)

Vix)
,\ 2m(Vo — E)
Incident particles K 2 = 5
— h
Vo
Region I Region 11
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Yo(x) = Age X2 + Bret ¥ (x > 0)
Y ,(x) must remain finiteevenasx - © - By = 0

Yo (x) = Aze™ X% (x > 0)
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Reg |

Reg 11

¥y (x) = A1/ 4 Bre 7K ¥ (x <)

Yo(x) = Aze™ ¥ (x = 0)
The wave function at x = 0 must be continuous

Y1(0) =9y2(0) > A1+ B =A4;
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Yy (x) = A1/ 2 4 Bre 7% (¢ < 0)
o (x) = Aze X2 (x > 0)

Voo The first derivatives of the wave
Sicidaitadiicles | functions must also be continuous at x=0
v,
Region I Region IT awl — awz '
Tx=0 0x x=0 0x ¥ =0

JK1A1 — jK1B1 = —K)A)
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Yr1(0) = Yr2(0) A1+ By = A

d | . .
_—w—-l- — —ﬂ jK1A1—-]K181=—K2A2
0x 0x

X =

x=0

Two equations and three unknowns ! So we cannot solve for all three
but we can express two co-efficients in terms of the remaining one.

— (K5 +2j — K? 2K (K1 — j
B — (K5 +2jK1K> — K{)Aq Ay — 1(K1 — JK2)Ay

(K3 + K?) (K3 + K?)
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What is the form of {JJ,and (?

Potential barrier Wave function at potential barrier
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V(x)

A
Incident particles
_._..._._....
Vo
-2 y ; 2
B, — —(K5 +2jK1Ky — K{) Ay
(K2 T Kl) Region | Region II
"""" =0

The probability density function of the reflected wave is -

81 : Bi“ _ (K22 — K12 +2JK1K2)(21(22 —2[(12 —2iK1K) A AT
(K5 + K;)?
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reflected flux

incident flux

Reflection coefficient = R =

v..B, .Bl*

R - :
v..A4 .4

Where v. and v, are the velocities of incident and reflected waves.
2mE — 2 =
Now, & = /_ﬁz__ and E=1/2mv? when V=0
Since K, applies to both incident and reflected waves in x < 0,

V.=V,

r I
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R__’U;»-B1-BT_31-BT
v - A AT AL AR

By B} (Kj—K{}*+4K{K; 0

R = ¥ 2 33
V(x)
1 ' articles *
Tot?l reflection at a_n Incident particle ) l
arbitrary step function V, ’
if E<V,
Region | Region II
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Transmitted wave co-efficient A,=A,+B, hence A, is not equal
to 0

=>pdf |W,(x)|? of finding the particle in region II is not zero

There is finite probability that incident particle will penetrate
the potential barrier and exist in region II.

But since reflection coefficient is 1, all particles in region II
will eventually turn around and move back into region I.

Quantum mechanical snooker!!!
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The potential barrier

Vi(x)
A

Regionl | RegionIl | Region III
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Region I Region I1 Region III

x=0

: ; 2mE
Regl:  ¥1(x) = Aje/®"* 4 Bre K% =5

Regll:  Y2(x) = Age2"  Bye=Kax ma=Trwa-p

RegIll:  Y3(x) = Aze/ XX 4 Bre= /KX

( since regions I and III are K;=K,)
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Ui1(x) = Are!®1* - Bie /K2

Y2(x) = Age™™* + Bre™ K

Y3(x) = Aze/ B 4 By 7K

Figure 2.7 The potential barrier function

{J/; can have component only in +x direction

Boundary conditions:
hence B;= 0;

At x = 0:
W, (0) = W, (0); —WO)‘— 2<0§4”
At x = a:
0 0
Wy(a) = Yy(a); Eé”z 4 =9; ; ag b (
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The wave functions through the potential barrier

Figure 2.8

TUDelft

ineering
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- | vy - Az - AZ Az - A
transmission coefficient 7 — d ) 3 ,_3 3

vi - AL - A A - A*

E E EL<Vy
T = 16(——)(1 — —) exp(—2Kra)
Vo Vo K> = \/%(Vo — E)

* We can see that T is not zero, a result which cannot be
explained from classical physics

*T is exponentially dependent on a. Thinner the barrier,
higher is the transmission co-efficient.
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Extension of wave theory to atoms.

* For simplicity potential function of one electron atom or
hydrogen atom is considered.

*Schrodinger’s wave equation to be solved in three
dimensions.

*Potential function is spherically symmetric = so use
spherical co-ordinates.
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The spherical co-ordinate system

<
%(rlel ¢)
i
40
a
7
4 |
/ I
Tf |
7 |
! |
e / '
| 4 I
’_‘\f |
| / |
/ I
/ |
|
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~ |
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~
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—h% %W (x, 1) W (x, 1)

: i W(x, 1) =7 .
1D: 5 3 VW (x, 1) = jli——r— 2
CARTESIAN COORDINATES

2
: —%TE@ + Viz,y, 2, )¥ = ih%
3D: g
L 2 o I I
A=VT= ﬂ;rﬂ_l_ -|5‘,§,.rE_I_EI';-:2
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: : 2
TISE in spherical

. —>
co-ordinates

(E- V(W (r,6.6)= 0

2
] %= ——Hr —H > 0 t ! 0 Hsm@ —H
P> dr] 0rD r’sin®f 09> r>sinf 00 06

Expanding the laplacian operator the TISE in spherical
co-ordinates is -

izaa_H atlJH 02LP 1 aHsmH atPH 2m,

E-V(nV =
rl] 0rQ r s1n20 0¢ r2sind 00 i 000 0° ( (7'))
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Separation of variables —> Y (r,@ 0 ) = R(r)0 ()0 ()

Substituting this form of solution, the TISE is -

sin’ 9 OH ORH 162(1) sm9 6HS . H+ 22 2m,

. E-V)=0
R ar0 drD O 362 0 381 00 O I]z( )

Each term is a function of only one of r, 6 and ¢. Grouping
terms of the same variable and equating to a constant we
can get three equations.
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The equation for ¢ can be written as -

2
q:.?wq)z:-mz 0 0 =e™

Wave function should be single valued > m=0,%1, £2, £3
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Similarly the equations in r and 8 can be solved in terms of
constants n and |. The separation of variables constants n,
| and m are known as principal, azimuthal (orbital) and
magnetic quantum numbers and related by —

n=1,2,3... I|=n-1,n-2,n-3,..0 |m|=lI-1,...,0

Each set of quantum numbers - a quantum state which
an electron can occupy

Department of Microelectronics & Computer Engineering 6
TUDelft



Electron energy can be written as —

_ 4
me

ar ¢ 20%0°

|

where m, is the electron mass and n is the principal quantum number.

* Energy is negative - electron is bound to nucleus
* n is integer - Energy can have only discrete values.

* electron being bound in a finite region of space >
quantized energy
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For the lowest energy state, n=1, I=m=0 and the wave
function is given by -

3/2
1 1 ) —

WIOOE ﬁ ' (a—o*

aoPu (1)

The value of r for which the probability of -
finding the electron is maximum is - @

Arr eoh?
”602 — 0529 A
moe
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> Bohr radius

ap =



aoP i (i)

0.2
Ol n=2]1=0
= Q.1f
T L
S
i | | 0 \ W O OO I A I | L1 !
5 10 5 10 15
r !
a %

(a) (b)

Radial probability density function for the one-electron atom for a) n=1,
|I=m=0 and b) n=2, [=m=0.

 Radius of second energy shell > radius of first energy shell
* finite (but small) probability that this electron can be at

smaller radius.
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One more quantum number !

Every electron has an intrinsic angular momentum or spin. This
spin is quantized, designated by spin quantum number s and take

values +1/2or-1/2
GAD O
\4

E, L.
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Pauli Exclusion Principle

“no two electrons in any given system (atom, molecule
or crystal) can have the same set of quantum numbers”

* This principle not only determines the distribution of
electrons in an atom but also among the energy states
in a crystal as will be seen later.
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Periodic Table

* In 1869 Mendeleev demonstrated that a periodic
relationship existed between the properties of an element
and its atomic weight.

*But it was only quantum mechanics which provided a
satisfactory explanation for the periodic table of elements.

*Each row in the periodic table corresponds to filling up of
one quantum shell of electrons.
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Initial portion of the periodic table

From the concept of quantum numbers and Pauli exclusion

principle we can explain the periodic table.

Element Notation n [ m §
Hydrogen s’ 1 0 0 +30r—;
Helium 1s? 1 0 0 +3and —3
Lithium 1522s! 2 0 0 +ior—1
Beryllium 152252 2 0 0 +1and —3
Boron 1522s%2p' 2 ]

Carbon 1522522 2 2 i

Nitrogen 1s?2s%2p? 2 I m=0,~-1,+1
Oxygen 1522522 p* 2 l s=42, —2
Fluorine 15225%2p° 2 1

Neon 1522522 pS 2 |
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* Hydrogen - single electron in lowest energy state (n=1,I=m=0). However
spin can be +1/2 or -1/2

*Helium - two electrons in lowest energy state and this shell is full. Valence
energy shell (which mainly determines the chemical activity) is full and hence
helium is an inert element.

sLithium - three electrons. 3 electron must go into second energy shell
(n=2)

*‘When n=2, 1I=0 or 1 and when |=1, m=0,%x1. In each case s=%2. So this
shell can accommodate 8 electrons.

*Neon has 10 electrons and hence the n=2 shell is also full making neon also
an inert element.

*Thus the period table can be built. At higher atomic numbers, the electrons
begin to interact and periodic table deviates a little from the simple
explanation.
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2 PERIODIC TABLE OF THE ELEMENTS
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