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Electron in a finite space  energy is quantized.

Pauli exclusion principle  one quantum state can 
be occupied by only one electron

Can we extend these concepts to electron in a 
crystal lattice?

Chapter 3
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Formation of Energy Bands

(a) Probability density function of n=1 electron in an isolated hydrogen atom.
(b) Overlapping probability density functions in two adjacent hydrogen atoms.
(c) splitting of n=1 state.

When two hydrogen atoms are brought close enough for the wave functions 
of n=1 electrons to start interacting, the n=1 state splits into two different 
energies, in accordance with Pauli exclusion principle.
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The splitting of an energy state into a band of allowed energies (r0 is the 
equilibrium inter-atomic distance in the crystal)

Hypothetically, if we have a periodic arrangement of many 
hydrogen atoms and they are brought close enough  initial 
quantized energy level will split into band of discrete levels.

Quasi-continuous when the 
number of atoms in the system is 
large.
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Splitting of energy states into allowed bands of energies in an atom 
containing electrons up to n=3.

As atoms come closer, the states 
in the outermost shell split first.

Based on r0, 
other energy 
states may 
or may not 
split

Forbidden energy 
bands

What happens in an atom containing many 
more electrons?



Department of Microelectronics & Computer Engineering

September/Oktober 2007 5

T=0K lower (valence) 
band full, upper 
(conduction) band empty

Actual splitting can be more 
complex as indicated for n=3 
shell in silicon.

Isolated silicon atom.
 2N 3s and 6N 3p states merge and form 8N new 
states, in which lower 4N states are occupied and 
upper 4N states are empty.



Department of Microelectronics & Computer Engineering

September/Oktober 2007 9

KRONIG-PENNEY MODEL

To develop the concept of allowed and forbidden energy levels 
using Schrodinger’s wave equation  we consider Kronig-
Penny model. 

First we need to understand how potential and electron energy 
vary inside an atom
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KRONIG-PENNEY MODEL

Potential and electron energy 
functions of a single, non-

interacting, one-electron atom

• potential (V) is inversely 
proportional to distance from 
positively charged nucleus.

• electron is negatively charged.  
E=-eV  energy is negative 
(which means the electron is 
attracted to the nucleus)

•At infinite distance from nucleus 
both V and E are zero (free 
electron)

V

E
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KRONIG-PENNEY MODEL

(a) Overlapping Energy functions of adjacent atoms (b) Net Energy function 
of a one-dimensional single crystal.

(a)

(b)
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KRONIG-PENNEY MODEL

One-dimensional periodic potential function of the Kronig-Penny model

Simplified potential function  Kronig-Penny model
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Two regions:
I.  V  = 0   a “free” particle in a potential well.

II. V=V0  ∞  an infinite number of potential barriers.

 

• Electron is bound in the crystal when E<V0

• Electrons are contained in the potential wells.

•There is possibility of tunneling between potential wells.
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Bloch Theorem – All one-electron wave functions for 
problems involving periodically varying potential 
functions, must be of the form –

KRONIG-PENNEY MODEL

jkxexux )()( =ψ

k  constant of motion (explained later)

u(x)  periodic function with period (a+b)

Bloch function
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Referring to chapter 2, total solution to Schrodinger’s equation =
Time-independent solution x Time-dependent solution

( )tEjjkx eexutxtx −==Ψ .)()()(),( ϕψ

This travelling wave solution represents the motion of an 
electron in a single-crystal material.

k  also referred to as wave number.






 −

=Ψ
tEkxj

exutx )(),(
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Time-independent Schrodinger wave 
equation -

Region I : V(x)=0. Substituting 

Where 2
2 2


mE=α

jkxexux )()( 1=ψ
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2
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2
2 2


mE=αNow,

Let
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There are two differential equations 
for regions I and II 
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There are two differential equations 
which give for region I and II 
the following solutions:
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The wave function must be 
finite everywhere. Also the 
wave function and its first 
derivative must be continuous 
everywhere.
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)()( ba −= ψψ
Due to periodicity,

Therefore

Also
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Four homogeneous equations in the unknowns A,B,C and D. 

Only a solution if:   determinant (coefficients of A,B,C & D) = 0



Department of Microelectronics & Computer Engineering

September/Oktober 2007 23

:

For  det=0,    

Only a solution if:    det = 0

β is an imaginary quantity. So real=γ

Substituting for β, 

Now
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To simplify further let barrier width b  0 and V0  ∞, such 
that bV0 remains constant. Then -

Let
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• This is a relation between parameter k, total Energy E 
(through parameter     ) and potential barrier bVo.

•This is not a solution to Schrodinger’s equation but a 
condition for a solution to exist.

•Crystal infinitely large  k can assume a continuum of 
values and must be real

α
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V0=0 hence:

1st case, free electron:

and

k=α


pk = Constant of motion parameter k is related to the 

particle momentum for the free electron
( A result which we already know. This validates Kronig-Penny model)



Department of Microelectronics & Computer Engineering

September/Oktober 2007 26

Parabolic E versus k curve for free 
electron
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This function can only have values between -1 
and +1, because it is equal to cos(ka)

Hence        can only have certain allowed values

Hence also the energy can have certain allowed 
values. 

Coming back to 
Crystal-lattice 

Let

aα
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Allowed values of aα
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E versus k diagram generated from the figure in the previous slide.

Since E is related to k, we can make a plot of E vs. k. 

Note that E is discontinuous  there are allowed and forbidden energy bands. 
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E versus k diagram showing displacements by       
of several sections of the allowed energy bands.

)2cos()2cos(cos ππ −=+= kakaka

Various sections of the E 
versus k diagram can be 
shifted by 

a
n π2

a
n π2
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allowed

allowed

E versus k diagram in the reduced k-space representation
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T=0K

Conduction 
band

Valence 
band

Empty

Full

(a) Covalent bonding in Si
(b) line representation of energy 
band diagram 

Eg
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Band-gap energy in some covalent 
elements

Element Eg (eV)

C (diamond) 5.48

Si 1.1

Ge 0.7

Sn (gray) 0.08

32
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T>0K

Two dimensional representation 
of breaking of a covalent 

bond.

 At T>0K, some covalent bonds 
break giving rise to positively 

charged empty states and 
electrons
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Electron and empty states are 
symmetric with respect to k.

E vs. K diagrams at T=0K and T>0K in the absence of 
external electric field.

Even within a 
band allowed 
energies are still 
quantized. This 
is because 
electrons are still 
confined to 
potential wells.
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Drift current

q  electron charge
N  charge density (C/cm3)
Vd  drift velocity of electron

Considering individual 
electron velocities

(summation taken 
over unit volume)



Department of Microelectronics & Computer Engineering

September/Oktober 2007 35

Drift current

No external 
force

No of electrons with 
+|k| value = No of 
electrons with -|k| 
value.

k related to 
momentum. 
So drift 
current J = 0

Vd in +x direction

K +ve

Vd in -x direction

K -ve
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E

When ext force (electric field) applied  Electrons move into 
empty energy states in conduction band, gain net energy 
and a net momentum.

Asymmetric distribution of 
electrons in E vs. k diagram 
when ext force is applied.

Drift current density due to 
motion of electrons -

(summation taken 
over unit volume)
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Electron effective mass

Total force acting on electrons in crystal –
FTotal = Fext + Fint = ma

Fint  internal forces in the crystal due to +vely charged ions 
and –vely charged electrons

Fext  externally applied electric field

m  rest mass of electron

a  acceleration.
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Electron effective mass

It is difficult to account for all of the internal force. So we 
define –

Fext = m*a

m*  effective mass of the electron (which takes into 
account internal forces)

Acceleration a  directly related only to ext applied force.
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Free electron:

khp
m
k

m
pE 

 ====
λ

 since ,
22

222

Taking derivative of E w.r.t k,

This implies that from E vs. k diagram we can get the 
velocity of the electron in real space.
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Again taking derivative of E w.r.t k,

This implies that from E vs. k diagram we can also get the effective mass 
of the electron in real space. For a free electron, the second derivative 
and hence mass is constant.
(why do we need to extract the electron mass, when we already know 
it ??? - read further)
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Free electron

Motion of electron is in opposite direction of the applied 
electric field due to the negative charge.

We now apply these concepts to the electrons in the 
crystal
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Electron in conduction  band

Conduction and valence bands in reduced k space with their 
parabolic approximations to compare with free electron

The energy of electrons at the 
bottom of the conduction band 
can be approximated as -

C1  +ve
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Electrons in conduction band

Effective mass:

• connects quantum mechanics 
and classical mechanics

• effective mass varies with k, 
but almost constant at the 
bottom of the conduction 
band.

• positive value since C1 is +ve
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Concept of the hole

• When valence electron goes to conduction band positively charged empty 

state is created.

• If a valence electron gets a small amount of energy, it can occupy this empty 

state.

• Movement of valence electron          movement of +vely charged empty state 

in opposite direction.

• The charge carrier in the form of +vely charged empty state is called the hole. 
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Drift current density due to electrons in valence band is -

Now,

Also in a band that is completely full, 
electron distribution is symmetric with 
respect to k. The net drift current density 
generated from a completely full band is 
then 0.

∑ ∑∑ −=
)( )()( totali emptyi

ii
filledi

i vvv
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Drift current due to electrons 
in the filled state can also be 
looked at as that due to 
placing positively charged 
particles in the empty states.

and

Therefore
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Valence band with conventional 
electron filled states and empty 

states

Concept of positive charges 
occupying the original empty states.
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Compare with free electron:

C2  +ve

Energy at the top of allowed energy 
band can be written as -
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Negative effective mass

Bit strange!

• negative mass is a result of our attempt to relate quantum and classical 
mechanics. It is due to the inclusion of the effect of internal forces due to ions 
and other electrons.

• The net motion of electrons in the nearly full valence band can also be described 
by considering the empty states, provided +ve electronic charge and +ve 
effective mass is associated with them

•This new particle with +ve electronic charge and +ve effective mass denoted by 
mp* is called the hole
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Electrons:

- in almost empty band

- negative charge

- positive effective mass

Holes:

- in almost full band

- positive charge

- positive effective mass

Both:
*

qE
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mn*/m0 mp*/m0

Silicon 1.08 0.56

Gallium Arsenide 0.067 0.48

Germanium 0.55 0.37

Electron and Hole effective mass in different 
semiconductors.
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Metals, semiconductors and insulators
Insulators:

Conduction 
band

Valence 
band

Empty

Full
Eg

• Eg 3.5 to 6 eV or higher

• valence band full, conduction band empty

• no charged particles that contribute to drift current.
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Semiconductors:

• resistivity can be varied over 
many orders of magnitude by 
doping

T > 0K

• Eg in semiconductors is small. Eg ~ 1eV

• At T>0K, there will be some electrons 
in conduction band and holes in valence 
band, which can contribute to current.
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Metals:

• Two possibilities - half filled conduction band or conduction and 
valence bands overlap.

• plenty of electrons and empty energy states that these electrons 
can move into.

•Very high electrical conductivity.
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Different potentials in different directions

Extending energy band theory to three dimensions

• Extend concepts of energy band and effective mass to 3-dimensions

• distance between atoms not 
the same in different 
directions

•E vs. k diagram  as seen 
before depends on ‘a’ and ‘a’ 
varies with direction.
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Indirect
“band gap”
transition

direct
“band gap”
transition

E vs. k diagrams of Si and GaAs

• [100] and [111] directions plotted along +k and –k axes.
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E vs. k space diagrams of Si and GaAs

•In GaAs the minimum conduction band energy and maximum 
valence band energy occur at same k value. Such 
semiconductors are called direct band-gap semiconductors. 
Others are called indirect band-gap semiconductors. Eg. Si, 
Ge.

• Direct bandgap semiconductors are used for making optical 
devices. In indirect bandgap semiconductors there is loss of 
momentum during transition from conduction band to valence 
band, making them unsuitable for optical devices.
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E vs. k space diagrams of Si and GaAs

     is larger in GaAs than in silicon

So m* in GaAs < m* in silicon

• effective mass can be different along 3 different k-vectors. 
We consider average effective mass hence forth.

2

2

dk
Ed
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• we want to know the number of charge carriers and their 
temperature dependence

• hence the question is: how many energy levels do we have 
and what is the chance that they are populated in 
dependence of the temperature. 

Density of states function
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Mathematical model for density of states

• we consider a free electron confined to an 3-dimensional cubical infinite 
potential well of side ‘a’.

andOne dimensional 
potential well
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Extending to 3-dimensions,

Where nx, ny and nz are positive integers (negative values 
lead to the same orbitals and hence do not represent a 
different quantum state)

Two-dimensional array of allowed quantum states 
in k-space 

))((2
2

2
2222222

2 a
nnnkkkkmE
zyxzyx

π++=++==

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Positive 1/8th of spherical k-space.

In 3-dimensional k-space, only 
1/8th of the spherical k-space 
needs to considered for 
determining the density of states

-ve value of (kx,ky,kz) result in 
same                        and hence 
same energy. Since these do not 
result in separate energy state, 
they are not considered.

Spherical surface is considered 
because value of k2 and hence 
energy is same along this surface.

2222
zyx kkkk ++=
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Positive 1/8th of spherical k-space.

Therefore Volume of a  k-point:

Distance between quantum states 
in any one axial direction is -
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Where:

2 two spin states allowed for each quantum number

            differential volume in k-space between shells of 
radius k and K+ Δk

September/Oktober 2007 59

Number of energy states 
between k, k+Δk

Simplifying,
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π a 3

π 3
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Substituting for dk in previous equation,

Use relationship between k & E  to move from k-space to 
real space.
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gT(E)dE is the density of states in volume a3. Dividing by a3 
we can get the volume density of states as 

        
      
π a 3

π 3

π2
h=
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Extension to semiconductors.

We have derived expression for density of allowed electron 
quantum states using model of free electron in an infinite 
potential well.

Electrons and holes are also confined within a semiconductor 
crystal

So we can extend this model to derive density of quantum 
states in conduction and valence bands.
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Extension to semiconductors.

Conduction band:

Parabolic E vs. k for free electron
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Valence band:
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Density of states in the conduction band

For free electron,              and 
m
kE

2

22=

For conduction band,
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Density of states in the valence band
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In general:

Density of states function



Department of Microelectronics & Computer Engineering

Statistical Mechanics.
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• While studying, large number of particles, we are interested 
only in statistical behavior of the group as a whole.

• In a semiconductor crystal, we are not interested in the 
behavior of each individual electron.

• The electrical characteristics will be determined by statistical 
behavior of large number of electrons.

• While studying statistical behavior, we must consider the 
laws that the particles obey.
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Distribution Laws:

Distribution of particles among energy states  3 laws.

  Particles distinguishable  Particles Identical

Unlimited number of 
particles allowed in 
each energy state

Maxwell-Boltzmann 
probability function.

E.g. Behavior of gas at low 
pressure.

Bose-Einstein function.

E.g. Behavior of photons or 
black body radiation.

Limited number of 
particles allowed in 
each energy state

Fermi-Dirac probability 
function

E.g. Electrons is a 
semiconductor crystal.
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Fermi-Dirac distribution function:

N(E)  number of electrons per unit volume per unit energy.

g(E)  number of quantum states per unit vol per unit energy.

EF  Fermi energy (explained in more detail later)






 −+

==

kT
EE

Ef
Eg
EN

F
F

exp1

1)(
)(
)(
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At T = 0 K

F(E < EF )=1

 F(E  > EF )=0 

          
       

The Fermi probability function 
versus energy for T=0K Discrete energy states and quantum 

states for a particular system. 

>EF

<EF
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The fermi probability function versus 
energy for different temperatures.

At T>0K, there is non-zero probability that some states above EF are occupied 
and some states below are empty  some electrons have jumped to higher 
energy levels with increasing thermal energy.

At E=EF 

At T>0
So Fermi Energy is the energy level where probability is ½.

Applet

http://www.benfold.com/sse/fd.html
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Discrete energy states and quantum states for the same system at T>0K

<EF

>EF

At T > 0 K
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At a certain T

The function fF(E) is symmetrical with the 
function 1-fF(E) about the Fermi energy EF
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