Chapter 4

The Semiconductor in Equilibrium
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Topics

* Thermal-equilibrium concentration of electron and holes

* Intrinsic carrier concentration

* Intrinsic Fermi-level position

 Dopant atoms and energy levels

 Extrinsic carrier concentration and temperature dependence
 Ionization energy of dopant atoms in silicon

* Fermi level in extrinsic semiconductor

* Degenerate semiconductors

* Fermi level in two systems in contact with each other and
at thermal equilibrium.
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Why?

e Current is determined by flow rate and density of
charge carriers.

* The density of electron and holes are related to the
density of states function and the Fermi distribution
(or probability) function.
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Density of states

470 (2m)
h?’ ) (b}

g(E) =

8c(E)

_ 47 (2m*)3/? |
For conduction band | 8.(£) = ( h3”) E—-E.| .
For valence band 471 (2m*)3/2
gU(E) - h3p E,—E & (®)

. | ]
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Fermi-Dirac distribution (or probability) function

N(E) B 1
——= = f(F) = 1+emp{(E;ﬁF)}

The probability that a quantum state at an energy E
will be occupied by an electron

The ratio between filled and total quantum states
at any energy E
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Fermi-Dirac distribution (or probability) function

1

(E—E
1—|—exp( T F)

Jr(E) =
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Distribution of electron and holes

Number of electronsat E | (E | = gC(E ) [F (E)
(in conduction band) 7 r\

Density of states at E Fermi-Dirac

probability function

Number of holes at E p(E):gV(E)[l— TF(E)]
(in valence band)
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8AE)HE) = n(E)

conduction band

Area = ny =
electron
concentration

g(EXA = fr(E)) = p(E)

$/(E) \

Area = pg =

Val CHC e b and hole concentration

frE) =0 frE)=1
(a)
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Electron concentration

Topofconduction band

N, = D ensity of states O Probability function dE

Bottom of conduction band

00

no :fgc(E)fF(E) dE
E

C

The equation isvalid for both intrinsic and extrins c
semiconductors
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no :fgC(E)fF(E) dE

1
fr(E) = o (EEr
P\ T
Condition:
E-E, >> kT

Boltzman approximation
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Comparison of Fermi-Dirac probability function and Maxwell-
Boltzmann approximation
1

F—-FE
ol )

Jr(E) =

Fermi—Dirac function

1.0
Boltzmann approximation
1 —(E — EF)
P i E) ~
2 fF(E) exp[ T :l

Maxwell-Boltzmann approximation and Fermi-Dirac function
are within 5% of each other when E-E. 23KT
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© 4 (2m*)>/? [ E — Eg) ]
ny = / e \/E — E. exXp : F)
E, ;?j - " [\T |
\_ E—E. /
"= kT
47 2m*kT)>/? —(E.— E >0
N, = = n;:% : exp{ : = F)][O n'/* exp (—n) dn

Gamma function:; |

;—ﬁ
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 (2mmikT 32 g o
S h? . kT

N, — (ZJTm:kT)3/2

N_= effective density of states function in the conduction band

—(E. —
nozN(_.exp': & EF)]

kT

The equation isvalid for both intrinsic and extrinsic
semiconductors
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Hole concentration p,= f gv(E)[1 — fr(E)]dE

&

1 —(Er — E)
1 — fr(E) = exp|: ( lfT ]

Ev 47 (2m* )32 (Er—E
pozf (rmy) \/Ev—Eepr: (IfT )}dE

= &

Department of Microelectronics and Computer Engineering -i-; U D e | ft



_ (2EmkT i oo [ ZEr — EV)
Po = 02 P kT

2rmik T\

N,= effective density of states function in the valence band

_(EF - Ev)
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Effective density of states function and effective mass values

Si 2.8 x 101° 1.04 x 10 1.08 0.56
Gallium Arsenide 4.7 x 10Y7 7.0 x 1018 0.067 0.48
Germanium 1.04 x 10 6.0 x 1018 0.55 0.37
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Intrinsic semiconductor

e Intrinsic electron concentration = Intrinsic hole concentration

@Z )

Intrinsic carrier concentration
Why?

* charge carriers due to thermal excitation
* thermally generated electrons and holes always created in pairs.
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INTRINSIC Semiconductor
/I ntrinsic Fermi level

fip = n; = Nf é?{p[_(gtl _®j|

kT

—(EFi — Ey)
p”N”Exp[ kT }

Intrinsic carrier concentration

_(E, — Ep: _(Ep; — E,
ni = N.N, exp[ ( el J:| - exXp [ (Eri — L E)}
kT kT
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_(E.—E _E
i’liz — NCNU exp[ ( CkT U):| = NCNU exp[—kTg:I

Commonly accepted values of n. at T=300K

Semiconductor N
Silicon 1.5 x 10 cm?3
Gallium Arsenide 1.8 x 10 cm=3
Germanium 2.4 x 1013 cm?3
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Application of the intrinsic semiconductors

* High Electron Mobility ieht
Transistor

A °
* ngh rESiStiViw Trﬁgﬂrfng
substrate for RF circuits F:t::: _ /

e amorphous-Si Solar Metal~
Cells

Structure of solar cell
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Where is the intrinsic Fermi level?

Conduction band

£ —%

Thermal E
excitation

Electron energy

E,

o
@ Valence band

E.. (Intrinsic Fermi level): E: at which electron and hole
concentration becomes equal
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Electron concentration Hole concentration

(E.— Ep —(Esi — E,
Neowp [ L2 E] iy, exp [ <0 E0)]

kT kT
I . ] ] . i ",:uH
Ep = E{L-r. + E.) 5 kT In (N )
. = c N =2 (ZHmEkT) /
[ ]{F E 3H'"l (m"f;)
= —(E.+E)+-kT In| —
A R v
i{,::,_|_;:):5 e N 3 m,
2 "L il 1 midgap v E‘rl _ E;ni.jg;_l;] — JIF{T lll
o 4 n

Even in intrinsic semiconductor, Fermi level is not exactly at centre between
conduction and valence bands.
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THE EXTRINSIC SEMICONDUCTOR
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Intrinsic silicon lattice
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Acceptor and Donor | mpurities:

* In Si four electrons in the valence shell participate in bonding.
* atom with more than 4 valence electrons = donor impurity

* lessthan 4 - acceptor impurity.
- *J----‘."‘
n s %ﬁ%ﬁ 5
Antimony %%g g‘%%

Arsenic z,ﬁ:,ﬁ@oﬁ% .
Phosphorous Lu%ﬁ% agﬁ .dmr

’.: %i@*@i% s impurity
= Antimony

e ..
Boron .o
Al . "'35' . Boron
uminum V! :I . acceptor
: el 4 impurity
Gallium o B
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Donor Impurity:

=== 81 — §i S1 Si =— S1 =— Sy ===
N-Type ||. ||' ||. II' I ||.
- 222 81— Si1 S1 Si — — Qy ==
:r" "'.‘1 .
D N Nyl
" _____ l;'r,__.._ffﬁﬂﬂlemfﬂ”ﬂ S22 S = S1 — S St =— S1 — S1 =:=¢
q emaer , ‘~.~1.
¢ Siifsp) s o A
: . . ==z 81— S1 S1 St =— S1 — §1 ===
““'.'"'i‘,".""":.‘::nh'."H’ I 1 I 1 I X
ggélgndﬂ::’ Sl , T i i T . i
TR e Silicon lattice doped with donor impurity

* At very low temperature, the donor (excess) electron is still bound to the impurity atom.
* However, the donor electron is loosely bound to the impurity atom and can become free with small
amount of thermal energy. Impurity atom is then ionized and positively charged.

Department of Microelectronics and Computer Engineering -i-;u D e I ft



Donor electron energy level:

Conduction band

Conduction band - - - = = = =
E XY YI I ) 0k
— e —— E,
5 5
5 E —mmmmmm oo Ep,
v o
5 £
: 3
Q —_—
'[% Valence band gy A Valence band E,

(a) @

* little energy required to move donor electrons from donor states to

conduction band.
* positively charged donor ions are fixed but donor electrons in the conduction

band can move through the crystal.
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Acceptor Impurity:

22 Si=— Si=— Si— Si=— Si =— Si ===:= 8i =— Si — Si =— Si — Si — S =:-
| | A | | | | | | | | | |

=22 Si = Si = Si = Si-== B = Sj ===:: §i = Si = Si = Si;z5= B = si =:=-
I | N | N | Al

s2Si— Si— Si— Si— Si — Si ===:=: 8i — Si — Si 7/Si — Si = Si ===
| | | | A | Il _w_l I

c S =S = Si =S =S =8 === 8 = 8 = Si — S§i =— Si = §j =:-

(@) (b)

* One covalent bond isincomplete for S.

* With little thermal energy, a valence electron can break from another covalent bond and
can occupy this position, thus creating a hole at the location of the broken covalent bond.
* The acceptor impurity is then ionized and negatively charged.
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Acceptor Energy Level.

Conduction band

E, E,
; :
w w
5 3 o _
§———————Ea§——\———\——5a
g Valence band £ 8 -+ ' N
= ence ban = + + o

(a) (b)

* little energy required to move valence electrons to acceptor levels.
* negatively charged acceptor ions are fixed but holes in the valence band can
move through the crystal.
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Electron concentration vs. temperature in n-type semiconductor

1010
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Electron concentration vs. temperature showing partial
lonization, extrinsic and intrinsic regions.
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Electron concentration vs. temperature in extrinsic
semiconductor

* At low temperatures, donor impurities are partially ionized. As
temperature increases the percentage of 1onized donor impurities also
INCreases

* Once all donor impurities are ionized, there is no increase in carrier
concentration. Even though intrinsic carrier concentration continues to
Increase, it isstill small compared to extrinsic concentration.

*At high temperatures, intrinsic carrier concentration dominates and
electron concentration continues to increase again.
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|onization energy:

The ionization energy isthe \ | /

vir ocl - £y Ea
energy necessary ()< F%E
to remove an e ectron from the J —

neutral atom. Atom

Conduction band

In case of donor atoms, the T YY) ) 7
jonization energy isthe s T T T T B
energy necessary ST A
to elevate an electron from :

= E

the donor level to
conduction band.

Valence band

(a)
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|onization energy:

* In the next few dlides, we will calculate the approximate ionization
energy for donor atoms.

*\We use Bohr atomic model for these calculations. For hydrogen
atom, Bohr model and quantum mechanics give similar results.

*Donor impurity atom can be visualized as one donor electron
orbiting the positively charged donor ion. This condition issimilar to
that in a hydrogen atom.

*However we have to consider permittivity of silicon instead of
permittivity of free space.
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Angular Momentum Quantization

* Bohr proposed that circumference of electron orbit = integer
number of wavelengths > 27r=nA,

hr hr 1nh
Then angular momentum, L =mvr=—= — = —
2mr 21

.

angular momentum of electron is quantized.
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Ionization energy calculation:

Coulomb attraction force  Centripetal force

g ¥
e m*u-

2
der; Fy

Angular momentum quantization =—— m*r,,u =nh

232

n-h-4dme
'rn"i —_—
m*e?
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-y
As defined in Chapter 2, dmegh- .
Bohr radius= (i[) — ———— =— UJ?}H

?
Mpe-
orbiting electronradius ' 7 )
h d B -_—= N E.f'
Bohr radius dp m*
For silicon, ' I 4 ﬁ
¢ =11.7and ™= 026 For n=1, P
m, 0
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e r,/a,=45 or r,=23.9A°

* Thisradius ~ 4 lattice constants of Si.

* Each unit cell contains 8 silicon atoms.

* Donor electron thus loosely bound to the donor atom.

* We will next find the approximate ionization energy.
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Totdenergy  F =7 + V
e AN
Kinetic energy Potential energy

% .4
1 m-e _
D | b T = refer dide 37
T 21:: t 2(nh)2(dre)? ( )
—e? —m*e
V= - -\ ) 7
der, (nh)-(dme)-
EoT4v=——"¢
ik 2(nh)*(4me)?
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* lonisation energy of Hydrogen in lowest energy state = -13.6eV
* For S, it 1s-25.8meV << band gap.
* Calculations using Bohr model give only the order of magnitude of the

lonisation energy. Actual values differ.
Impurity ionization energiesin gallium arsenide

Donors

Impurity ionization energiesin Silicon and
Germanium Selenium 0.0059
Tellurium 0.0058
Si Ge Silicon 0.0058
Donors Germanium 0.0061

Phosphorus 0.045 0.012

Arsenic 0.05 0.0127 Acceptors

Beryllium 0.028
Acceptors Zinc 0.0307
Cadmium 0.0347
Boron 0.045 0.0104 IS"icon 0.0345
Aluminum 0.06 0.0102 Germanium 0.0404
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EXTRINSIC Semiconductor

1
i.
\ Majority carrier
\ electrons
‘-\ 8E)
E, . \
%, Area = ny =
\,. electron
______ 3‘_ I concentration
o f®'N,
---------- =5 SR YD R
\‘
\ | N-TYPE
E \
8UE) Area = p, =
hole concentration
Minority carrier
holes
fr(E) =0 AEY=1

no = Ne exp[

"'”(Ec - EF)]
kT

1
Minority carrier
electrons
l. 8E)
Ec * X’\
\“ Area = ng =
electron
\t‘fF(E) concenltralion
...... N
\_.
o e o
" %, P-TYPE
E \‘\
X Majority carrier
PP, holes
\ Area = pg =
\ hole concentration
fr(E)=0 frE) =1

_(EF — Ey)
kT

po = Ny exp[
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=il = Hp)
= N,
no exp[ T ]
—(Fr—E
po = Ny eXP[ ( ET v)]

The equation isvalid for both intrinsic and extrins c
semiconductors
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Another form (relation between E. and E_))

Intrinsic carrier concentration

—(E, — Ep; Er— Ep;
HOZNCeXP[ - F)]exp[( - m]
/" [Ep—Ep, —(Ep — Ep;
o = exp[ FkT Fz:l o = exp[ ( FkT EF;)]

— 2
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Where is the Fermi level?

—(E, — E
noz@xp[ ( T F)]

Nt' —— : = Area ==
E(- — E;r = kT In (—) \\I electron

-~ .
n 0 Epf————= S concentration

| fﬁ(f’\
Epfp====m—= - —-—-\;————

"o XP[EF’:TEF;] | \‘?\
! \

— | gAE) Area = py =
| hole concentration

: : Y
- fL;.'—fL;.',-tﬁ:TlI'l(—) |
| ni

| . |

fr(E)=0 JrE) =1
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E
Condition for the T
Boltzmann approximation
gE)
\‘
Fe 1 "' Area = ny =
—7 \. electron
ol A A _’ §‘_ N J concentration
fF(E).\. —
\‘
E-E >3KT \
C F . \
: ‘.
\ ?\
gE) Area = p, =
hole concentration
fr(E) =0 fHEY=1
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If the impurity concentration is very high....

Fermi level will be very close to conduction band or valence
band.

No Boltzmann approximation

I

Use The Fermi-Dirac Integral
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1

(E — E
)

fr(E) =

Boltzman approximation

T [_(Ef - EF)} Only if E-E. > 3KT
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10

Fermi-Dirac Integral —7
/"
112 4F )
oo E—-E,
ng = 4_31'(2”::)3;’2[ ( ) 1 ’I/
h3 E. 1 +ex E — EF 7
P\ ™%t 2 7
< / I
??b /Flfz("]r* Efljj(:nng—
R 0
E—E, Er — E, Z 107! .
n= npF=———— 2 /
) £ /
(A}
102 /
zm*kT)ﬂﬂ fm ?:.llﬂdn 7
— 4 n y
"0 ( h? o 1+exp(—nr) //'
U/
yr o0 1/2 —6 -4 -2 0 2 4 6
Fip(r) =f n_dn (Ep — E/KT =y
o l+exp(m—nr) If N1, then E.SE.
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Degenerate Semiconductors
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If the impurity atoms are very close
each other...

* Donor electrons interact with each other
* The single discrete donor energy will split into a band
 The band may overlap the conduction band

» If the concentration exceed N, Er lies within the
conduction band
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Degenerated Semiconductor

Ny, = N, N >N

Y

.-}.. s i'?:‘z.? oo ..-:.‘.-‘-? :p;‘i . g T T e ”_;r\_ M."‘-ﬁ"’.‘x-<
Cun{lu&tmn«band IR AI :#: *: fCDn&fu&E;Gmb&n¢ S

“M*-—i*’—-’ f -.ﬁ.w%*‘“a—r F T S e E

3 " & = Empty states

5 \_ Filled = L

o A tle 5 / (holes)

o — states 5

S (electrons) -

15 =

2 5

2 o

(a) (b)

Fermi level in the conduction band: Metallic conduction

Department of Microelectronics and Computer Engineering T U D e I f.t



Statistics of donors and acceptors
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How many electrons still in the donor levels
compared to the total number of electrons?

depends on the temperature and the Fermi level....
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Probability function for donor & acceptor levels

Density of electrons

occupying donor states @ 1
Density of donor atoms N B 1 Ed —_ EF
i1+ —exp
2 kT

This same as the Fermi-Dirac probability function except
the pre-exponential coefficient of 2.

ng = Ny — Concentration of ionized donors
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similar for holes:

N,
.Ihqu —_ I —|_ I ( P:III_ B ‘,f:'” )
¢ P\

g=degeneration factor; 4 for GaAs and Si acceptor levels

— .I'll'lr'rlj - .!"I"u'llh,.

Department of Microelectronics and Computer Engineering -I(-; U D e I f.t



n= Np™* n= Nbp n» Np

L ow temperature Moderate temperature High temperature
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Moderate temperature

E-E->>KT
n, 1
1 E —FE
d 1+exp( : F]
2 kT
—(Egq— EF
ny =~ N“ll = ENJ CXP |: | i_r ! J}

| ( JF:.‘”' — E;.' )
= 2X
5 P KT

If E,-E; >> KT, then even E_-E. >> KT

—(E. — EF)
= N, exr
Then, n, E-':.p[ — ]
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Fraction of electrons still in the donor states

—(E; — Efr
ENJE.‘-LPI: | d_, f}}
ng k1
P —(E,—E; —(E.— Er

d T 50 2N :::up[ { ijffT’ ‘r }] + N,.cxp|: o ‘r_}}
N |

iy -+ ny N J'H"r'r:- — E:' _ Eu'::' n=Np

2V : y )
Npt=Np

With Phosphorus doping of Ng=10!*cm, at
T=300K, n,/(n,+n,)=0.41%

Almost complete ionization at Room Temp!
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Extremely low temperature (T=0K)

n,=N, Freeze-out

NL;
Ng = -

| .E,,.' — Eli.'
| + 5 n::-;p( T )

d

E. > E,

Conduction band

Electron energy ———»
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High temperature

720> \'D (because of thermally generated electrons)

Hn.:n;-:N,_ﬂéxp[

'U'OT"EBO goao
Gooo 000003 (o)

H= 1> IND (because of thermally generated holes)

e At very high temperature behavior is just like the
intrinsic semiconductor
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n=Np*

gg —++~£o+olo—-—

He” _Cor_nple_te Intrinsic -
Ev ionization
I 'ﬁ: Extrinsic |
\ n= Nbp 7> Np
- Partial Nir=Np 4
3 ionization / *\’D =
'-:= ”}I_-'r L .ff 'U'mooo oooO'on—o CX
f” p“—'%»ND
/
Freeze-out;(2 | !
L= .
: f /” 100) 200) A0 400 SO0 GO TJOO

'K}
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Compensated semiconductor

Both donor and acceptor impurities in the same region

« If N, > N, 2 n-type compensated semiconductor
« If Ny, <N, > p-type compensated semiconductor

« If N, = N, > completely compensated (will behave like

intrinsic material)
e Practical semiconductor is always compensated semiconductor.

Eg. Substrate is predoped usually p-type. All other dopings are done on top
of this.
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Total electron

Charge nQUtrallty . concentration
Thermal ( Donor
electrons 1 electrons
Ionized acceptors A, o
i j
/ F ¥ ¥ F L
- Un-ionized Ni=Wy,;—ny
Ionized donors dontis ] aon
______________________________ EFi
" . : Un-ionized . =W, —p
Complete lonlzatlon acceptors Ionized acceptors
ng and p, are both zero f ! R ! ‘
+ TN
no+ Ny = po+Ng b ,
Thermal o Acceptor
holes ( holes
Total hole

concentration

CooEms e
]
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Recall 710 + N, = po + Ny

. - 2
Using the relation .~ =np,

1, is not simply NV,
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Similarly in p-type semiconductor,

2
b - Na-Nd+\/HNa-NdH )

2 1 2 0

Minority carrier concentration

0 .2 7 2
pU - no = !
N, P,
(n-type material) (p-type material)
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IV. PosiTioN OF FERMI ENERGY LEVEL
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Where is the Fermi level of an extrinsic semiconductor?

_{Ee — f‘l..]r.'}
kT

ng = N, exp [

N,
Ei- — E,r: = k1 In (—)

i

e e e e e e e ———— e T —

N-type: N,>>n. then n,~N,
N,
E.— Ep=kT In (—)

Nf."
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Where is the Fermi level of a p-type extrinsic semiconductor?

kT

_(EF - Ev)]

po = Ny exp[

| ) - N,
‘f;;:—e";,.:ﬁ:.-’ ln(—)

Po,

P-type: N,>>n. then p,=N,
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—_—
[y

Electron energy ——
e

Electiron enere

(a) (b)

Position of Fermi level for an (a) n-type and (b) p-type
semicondcutor.
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Different expression for the n-type...

—

| Er — EF; ZRTIH( !”) ‘
1,

Another expression for the p-type

EL-F,

I:I]:II:I
D]ill:l
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Variation of E_. with doping concentration:

N,;(cm e
N 1012 1013 1014 1015 1016 1017 1018
. I I T T I |
E,=E —kTIn| —<
N
‘ /thpe
o
N
p type
E,=E, +kTIn| ==
N,
E | | | | | |
¥ 1012 1013 1014 1015 1016 1017 1018

N, (cm™?)
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Variation of E. with temperature T

E.- E. = kT Ind™ s
- o= ne— ~ 1
F Fi n. 08 L Conduction band
! 0.6 e
04l S%Q—-ﬂ;ml%w
Py - ntype \\
b - B = kT I I z 02 %%\\T\\
Fi P ﬁ H ;IE: 0 " Intrinsic level T~ "% 10'°
i « —02f ‘103%7f1016/
* At higher temperatures, the W ="
semiconductor becomes more Uk
. . . . . —0.8 alence ban
intrinsic. n; increases and Fermi level yeen e
1. 0 100 200 300 400 500 600
moves towards mid-gap o

Variation of Fermi level with temperature for

At T=0, Fermi level isabove E;in n- different doping concentrations

type and below E, in p-type
semiconductor
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EF must be equal when different systems are
in contact and in thermodynamic equilibrium

.
— E
—— | Allowed
P T CICTEY
= | Staics I Allowed
’ - energy
J states
(a) (b)
Consider amaterial A, with Fermi level material B with Fermi level E,.
E... Bands below E., are full and above

are empty.
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EF must be equal when different systems are
in contact and in thermodynamic equilibrium

|

—s T Ep == CENEER = = =« T S 2t = | .

i

i

* When A and B are brought in contact, electrons will flow
from A into lower energy states of B, until thermal
equilibrium is reached.

« Thermal equilibrium - E. samein A & B
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Summary | _ 1 (£-E,) | Holdsfor both
* Electron concentration no-NceXPH T iftrinsic as well

— as extrinsic

. W(E,.- E i .
 Hole concentration p,= N, epo( FkT ) H semiconductor
e Intrinsic carrier concentration :

01 (E.- E) 0 E i
n’=n N N ex ¢ v 'NNDGX —& -
i opo ct 'y pH kT C % pH k E

* In intrinsic semiconductor, Fermi level is close to but not
exactly in the centre between conduction and valence bands.

3 i mp* ]
EFi - Emidgap Zkﬁ lnﬁ m * ﬁ

n
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Summary

* In extrinsic semiconductor, Fermi level is close to conduction
band (n-type) or valence band (p-type)

* Position of Fermi level in extrinsic semiconductor

i ]
E.- E. KElpZ
I
* In compensated n-type semiconductor electron concentration
IS given by >
- Nd B Na D]\]af Na - ZD
n, = + n. +
> 2 1

* When two different systems are in contact and in thermal
equilibrium, E; must be the same in both systems.
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