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Chapter 4

The Semiconductor in Equilibrium
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Topics

• Thermal-equilibrium concentration of electron and holes
• Intrinsic carrier concentration
• Intrinsic Fermi-level position
• Dopant atoms and energy levels
• Extrinsic carrier concentration and temperature dependence
• Ionization energy of dopant atoms in silicon
• Fermi level in extrinsic semiconductor
• Degenerate semiconductors
• Fermi level in two systems in contact with each other and 

at thermal equilibrium.
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Why?
• Current is determined by flow rate and density of 

charge carriers. 
• The density of electron and holes are related to the 

density of states function and the Fermi distribution 
(or probability) function.
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Conduction band

Valence band
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Density of quantum states per unit volume at energy E

For conduction band

For valence band

Density of states

*
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The probability that a quantum state at an energy E 
will be occupied by an electron 

The ratio between filled and total quantum states 
at any energy E 

Fermi-Dirac distribution (or probability) function 

6
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Fermi-Dirac distribution (or probability) function 
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Distribution of electron and holes

n ( E ) = g c ( E ) f F ( E )

p ( E ) = g v ( E ) 1 − f F ( E )[ ]

Number of electrons at E
(in conduction band)

Density of states at E Fermi-Dirac 
probability function

Number of holes at E 
(in valence band)
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conduction band

9

valence band
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Electron concentration

n 0 = D e n s i t y  o f  s t a t e s  ∗  P r o b a b i l i t y  f u n c t i o n  d E
B o t t o m  o f  c o n d u c t i o n  b a n d

T o p  o f  c o n d u c t i o n  b a n d

∫

EC

∞

The equation is valid for both intrinsic and extrinsic 
semiconductors
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Condition:
E - EF >> kT 

Boltzman approximation

11
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Comparison of Fermi-Dirac probability function and Maxwell-
Boltzmann approximation

3kT                    

                
Maxwell-Boltzmann approximation and Fermi-Dirac function 
are within 5% of each other when E-EF 3KT≥
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n0

Gamma function:

1

2
π
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Nc= effective density of states function in the conduction band

The equation is valid for both intrinsic and extrinsic 
semiconductors

14
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Hole concentration
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Nv= effective density of states function in the valence band

16
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Nc(cm-3) Nv(cm-3) mn*/m0 mp*/m0

Si 2.8 x 1019 1.04 x 1019 1.08 0.56

Gallium Arsenide 4.7 x 1017 7.0 x 1018 0.067 0.48

Germanium 1.04 x 1019 6.0 x 1018 0.55 0.37

Effective density of states function and effective mass values
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Intrinsic semiconductor

• Intrinsic electron concentration = Intrinsic hole concentration

n i = p i

Intrinsic carrier concentration

Why?

• charge carriers due to thermal excitation
• thermally generated electrons and holes always created in pairs.
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INTRINSIC Semiconductor
Intrinsic Fermi level

Intrinsic carrier concentration

19
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Semiconductor Ni

Silicon 1.5 x 1010 cm-3

Gallium Arsenide 1.8 x 106 cm-3

Germanium 2.4 x 1013 cm-3

Commonly accepted values of ni at T=300K
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e
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E
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vci 101010 log

2
)(log

2
1)(log −=

Plot of log10(ni) vs. 1/T is straight 
line.

Slope is negative. From the slope 
Eg can be calculated
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Application of the intrinsic semiconductors

• High Electron Mobility 
Transistor

• High resistivity 
substrate for RF circuits

• amorphous-Si Solar 
Cells

Structure of solar cell
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Conduction band

Valence band

Where is the intrinsic Fermi level?

EFi (Intrinsic Fermi level): EF at which electron and hole 
concentration becomes equal
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Even in intrinsic semiconductor, Fermi level is not exactly at centre between 
conduction and valence bands.

Electron concentration Hole concentration
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Intrinsic silicon lattice
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Acceptor and Donor Impurities:

• In Si four electrons in the valence shell participate in bonding.
• atom with more than 4 valence electrons  donor impurity
• less than 4  acceptor impurity.

27
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Silicon lattice doped with donor impurity

Donor Impurity:

• At very low temperature, the donor (excess) electron is still bound to the impurity atom.
• However, the donor electron is loosely bound to the impurity atom and can become free with small 
amount of thermal energy. Impurity atom is then ionized and positively charged.

28
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• little energy required to move donor electrons from donor states to 
conduction band.
• positively charged donor ions are fixed but donor electrons in the conduction 
band can move through the crystal.

Donor electron energy level:

29
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Acceptor Impurity:

• One covalent bond is incomplete for Si.
• With little thermal energy, a valence electron can break from another covalent bond and 
can occupy this position, thus creating a hole at the location of the broken covalent bond.
• The acceptor impurity is then ionized and negatively charged.

30
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Acceptor Energy Level:

• little energy required to move valence electrons to acceptor levels.
• negatively charged acceptor ions are fixed but holes in the valence band can 
move through the crystal.

31
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Electron concentration vs. temperature showing partial 
ionization, extrinsic and intrinsic regions.

Electron concentration vs. temperature in n-type semiconductor
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Electron concentration vs. temperature in extrinsic 
semiconductor

• At low temperatures, donor impurities are partially ionized. As 
temperature increases the percentage of ionized donor impurities also 
increases

• Once all donor impurities are ionized, there is no increase in carrier 
concentration. Even though intrinsic carrier concentration continues to 
increase, it is still small compared to extrinsic concentration.

•At high temperatures, intrinsic carrier concentration dominates and 
electron concentration continues to increase again.
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The ionization energy is the 
energy necessary 
to remove an electron from the 
neutral atom.

In case of donor atoms, the 
ionization energy is the 
energy necessary 
to elevate an electron from 
the donor level to 
conduction band.

Ionization energy:

34
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• In the next few slides, we will calculate the approximate ionization 
energy for donor atoms.

•We use Bohr atomic model for these calculations. For hydrogen 
atom, Bohr model and quantum mechanics give similar results.

•Donor impurity atom can be visualized as one donor electron 
orbiting the positively charged donor ion. This condition is similar to 
that in a hydrogen atom.

•However we have to consider permittivity of silicon instead of 
permittivity of free space.

Ionization energy:

35
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Angular Momentum Quantization

• Bohr proposed that circumference of electron orbit = integer 
number of wavelengths 

36

Then angular momentum,

 angular momentum of electron is quantized.
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Ionization energy calculation:

Centripetal forceCoulomb attraction force

Angular momentum quantization

37
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As defined in Chapter 2, 
Bohr radius =

26.0
m

*m and 7.11

silicon,For 

0

==rε For n=1,

38

=
radiusBohr 

radiuselectron  orbiting
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• r1/a0=45 or r1=23.9A0

• This radius ~ 4 lattice constants of Si.

• Each unit cell contains 8 silicon atoms.

• Donor electron thus loosely bound to the donor atom.

• We will next find the approximate ionization energy.
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Total energy

40

Kinetic energy Potential energy

( refer slide 37)



      Department of Microelectronics and Computer Engineering

23/09/08 41

• Ionisation energy of Hydrogen in lowest energy state = -13.6eV

• For Si, it is -25.8meV << band gap.

• Calculations using Bohr model give only the order of magnitude of the 

ionisation energy. Actual values differ.

Impurity Ionization energy (eV)

Si Ge

Donors

Phosphorus 0.045 0.012

Arsenic 0.05 0.0127

Acceptors

Boron 0.045 0.0104

Aluminum 0.06 0.0102

Impurity ionization energies in Silicon and 
Germanium

Impurity Ionization energy (eV)

Donors

Selenium 0.0059

Tellurium 0.0058

Silicon 0.0058

Germanium 0.0061

Acceptors

Beryllium 0.028

Zinc 0.0307

Cadmium 0.0347

Silicon 0.0345

Germanium 0.0404

Impurity ionization energies in gallium arsenide



      Department of Microelectronics and Computer Engineering

23/09/08 42

EXTRINSIC Semiconductor

n-TYPE p-TYPE

Majority carrier 
electrons

Minority carrier 
holes

Majority carrier 
holes

Minority carrier 
electrons
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The equation is valid for both intrinsic and extrinsic 
semiconductors

43
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Another form (relation between EF and EFi)
Intrinsic carrier concentration

n0p0=ni
2
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Where is the Fermi level?
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Condition for the 
Boltzmann approximation

EC-EF > 3KT



      Department of Microelectronics and Computer Engineering

23/09/08 47

Use The Fermi-Dirac Integral

No Boltzmann approximation 

If the impurity concentration is very high....

Fermi level will be very close to conduction band or valence 
band.
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Boltzman approximation

Only if EC-EF > 3KT

48
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Fermi-Dirac Integral 

If ηF>1, then EF>EC
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Degenerate Semiconductors
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If the impurity atoms are very close 
each other...

• Donor electrons interact with each other
• The single discrete donor energy will split into a band
• The band may overlap the conduction band
• If the concentration exceed Nc, EF lies within the 

conduction band
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Nd  >  Nc Na > Nv

Degenerated Semiconductor

Fermi level in the conduction band: Metallic conduction 

52
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Statistics of donors and acceptors
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How many electrons still in the donor levels 
compared to the total number of electrons? 

depends on the temperature and the Fermi level....
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Probability function for donor & acceptor levels

This same as the Fermi-Dirac probability function except 
the pre-exponential coefficient of ½.

Density of donor atoms

Density of electrons 
occupying donor states

Concentration of ionized donors

55
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similar for holes:

g=degeneration factor; 4 for GaAs and Si acceptor levels
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Low temperature Moderate temperature High temperature
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Ed-EF>>kT

Moderate temperature

If Ed-EF >> kT, then even Ec-EF >> KT

58

Then,
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With Phosphorus doping of Nd=1016cm-3, at 
T=300K, nd/(nd+n0)=0.41% 

Almost complete ionization at Room Temp!

Fraction of electrons still in the donor states

59
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Extremely low temperature (T=0K)

nd=Nd

EF > Ed

Freeze-out

60
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High temperature

• At very high temperature behavior is just like the 
intrinsic semiconductor

(because of thermally generated electrons)

(because of thermally generated holes)
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Complete 
ionization

Freeze-out

62
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Compensated semiconductor

• Both donor and acceptor impurities in the same region

• If Nd > Na  n-type compensated semiconductor

• If Nd < Na  p-type compensated semiconductor

• If Nd = Na  completely compensated (will behave like 

intrinsic material)

• Practical semiconductor is always compensated semiconductor. 

    Eg. Substrate is predoped usually p-type. All other dopings are done on top 

of this.
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Charge neutrality :

Ionized acceptors

Ionized donors
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Using the relation 

n0 is not simply Nd

Recall
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Minority carrier concentration

p 0 =
n i

2

n 0

Similarly in p-type semiconductor,

2
2

0 22 i
dada nNNNNp +





 −+−=

(n-type material)

o

i

p
nn

2

0 =

(p-type material)
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Where is the Fermi level of an extrinsic semiconductor? 

N-type: Nd>>ni then n0≈Nd 

68
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Where is the Fermi level of a p-type extrinsic semiconductor? 

P-type: Na>>ni then p0≈Na 







=−

a

v
vF N

NkTEE ln 
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Position of Fermi level for an (a) n-type  and (b) p-type 
semicondcutor.

(a) (b)

70
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Different expression for the n-type...

Another expression for the p-type

E F i − E F = k T l n
p 0

n i






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Variation of EF with doping concentration:

72
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Variation of EF with temperature T 

E F i − E F = k T l n
p 0

n i













=−

i
FiF n

nkTEE 0ln 

Variation of Fermi level with temperature for 
different doping concentrations

• At higher temperatures, the 
semiconductor becomes more 

intrinsic. ni increases and Fermi level 
moves towards mid-gap

•At T=0, Fermi level is above Ed in n-
type and below Ea in p-type 
semiconductor
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EF must be equal when different systems are 
in contact and in thermodynamic equilibrium

Consider a material A, with Fermi level 
EFA. Bands below EFA are full and above 
are empty.

material B with Fermi level EFB. 

74
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EF must be equal when different systems are 
in contact and in thermodynamic equilibrium

• When A and B are brought in contact, electrons will flow 
from A into lower energy states of B, until thermal 
equilibrium is reached.

• Thermal equilibrium  EF same in A & B

75
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  Summary
• Electron concentration 

• Hole concentration

• Intrinsic carrier concentration :

• In intrinsic semiconductor, Fermi level is close to but not 
exactly in the centre between conduction and valence bands.
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  Summary
• In extrinsic semiconductor, Fermi level is close to conduction 

band (n-type) or valence band (p-type)

• Position of Fermi level in extrinsic semiconductor

• In compensated n-type semiconductor electron concentration 
is given by 

• When two different systems are in contact and in thermal 
equilibrium, EF must be the same in both systems.
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