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Chapter 5

Carrier Transport Phenomena
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We now study the effect of external fields (electric field, 
magnetic field) on semiconducting material
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Objective

• Discuss drift and diffusion current densities
• Explain why carriers reach an average drift velocity
• Discuss mechanism of lattice and impurity scattering
• Define mobility, conductivity and resistivity
• Discuss temperature and impurity dependence on 

mobility and velocity saturation
• State the Einstein relation
• Describe the Hall effect
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Drift current

Electric field  force on electrons and holes 

net movement of 
electrons and holes

Net movement of charge due to electric field is called drift.

Free states in conduction and 
valence band
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Jp,drf  = e p vd      A/cm2

Drift current density

(Volume) density of holes

Average drift velocity

Jn,drf  = -e n  vd    A/cm2

for electrons

for holes

Jp
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Jn E
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E

+e      

So does velocity monotonically increase with time?

Velocity of the particles

 v  drift velocity of the hole in the electric field
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Thermal and drift velocities

Without E field With E field

• Even in the absence of E-field the holes have random thermal velocity 
(vth)
• They collide with ionized impurity atoms and thermally vibrating lattice 
atoms.
•  Let τcp  mean time between collisions.
•  with E-field  net drift of holes in the direction of the E-field
•  net drift velocity is small perturbation on random thermal velocity.
•  so τcp remains almost unchanged even in the presence of E-field.

vth + v

7



      Department of Microelectronics and Computer Engineering

03/10/08

Thermal and drift velocities

Without E field With E field

Now, E
m
e

v
p

cp
peak *

τ
=
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Drift velocity vd

v

t
vd

0

E
m
e

v
p

cp
peak *

τ
=

τcp 2τcp 3τcp

Average drift velocity =

Using more accurate model including the 
effect of statistical distribution, 

μp  (mobility)
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vd = μΕ

For holes:

For electrons:





Mobility:
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Unit: cm2/Vsμ = vd /E
Mobility:

μn (cm2/V-s) μp (cm2/V-s )

Silicon 1350 480

Gallium Arsenide 8500 400

Germanium 3900 1900

mn*/m0 mp*/m0

Silicon 1.08 0.56

Gallium Arsenide 0.067 0.48

Germanium 0.55 0.37
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Scattering: 

Two main scattering mechanisms -

• Lattice scattering or phonon scattering

• Impurity scattering
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Phonon Scattering

Phonons are lattice vibrations (Atoms randomly vibrate about their position @ T>0K)

Lattice vibration causes a local 
volume change 

and hence lattice constant 
change. 

Bandgap generally 
widens with a 
smaller lattice 

constant. 

Disruption of 
valence and 

conduction band 
edges scatters 

the carriers.

•Mobility due to lattice scattering    (as temp increases 
vibration of atoms also increases)

2
3 −

∝ TLµ
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(a) Electron and (b) Hole mobilities in Si vs. T at different doping concentrations. 
(Inserts show dependence for almost intrinsic Si)
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T increases  thermal velocity v→ th increases, 
so less time spent for scattering  →

NI increases  the scattering chance →
increases →

Ionized impurity scattering

nTI ∝µ

Scattering due to coulomb interaction between 
electrons/holes and ionized impurities.

I
I N

1∝µ
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Doping level in modern processors

Electron and Hole mobility vs. impurity concentration.

High doping is required to overcome 
short channel effects even though it 
reduces mobility.

16



      Department of Microelectronics and Computer Engineering

03/10/08

  τI : average time between two collisions with dopant atoms

  τL : average time between two collisions with “vibrating" lattice points

Total number of collisions in dt:

How to combine mobility effects?

: Number of collisions in time dt due to impurity scattering

: Number of collisions in time dt due to lattice scattering

d t

τ I

d t

τ L
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Low doping concentration or high T  The lattice scattering dominates→

High doping concentration or low T  The impurity scattering dominates→

Electron mobility of Si vs. T for various Na

90nm CMOS process

18

At present doping 
level, cooling does not 
improve speed much.
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Drift current density

• J increases then 
• cut-off frequency increases
• circuit density increases

µ =
e τ c

m *J n d r f = e µ n E

How can we increase J?
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How can we increase J?

• Increase mobility

• Strained silicon  effective mass   , mobility 

• GaAs or Ge as semiconducting material

• Increase electric field

• Shorter gate length
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Strained Si 

• Strain decreases the effective mass, increasing the mobility 
• already been used for production

Intel 90nm 
process
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



Conductivity

σ = eμnn + eμpp
Units (Ω-cm)-1

Units Ω-cm
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Impurity scattering 
   

Resistivity vs. impurity concentration in Si at 
T=300K

If we assume complete 
ionization,

apdn NeNe µµ
ρ

σ or  1 ==

But curve not linear 
because -

Impurity scattering 
affects mobility.
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Resistivity vs. impurity concentration for Ge, GaAs and 
GaP

Impurity scattering 
affecting mobility.
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Electron concentration and conductivity vs. 1/T

Lattice scattering
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Electron concentration and conductivity vs. 1/T

• Assuming a n-type material with donor doping Nd >> ni, 

• If we also assume complete ionization,
Mid temp  complete ionization  n constant at Nd but μ reduces 
with temp due to lattice scattering  so conductivity drops.

•At high temperature, intrinsic carrier concentration increases and 
dominates both n and σ

•At low temp, due to freeze-out both n and σ reduce

( ) nepne npn µµµσ ≈+=

dn Neµρσ == 1

n electron concentration
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Ohm’s law

Ohms Law:
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Velocity saturation

vd = μE
vth for Si  

Modern processors
(90nm,1.2V)Random 

thermal    = 
energy

28

vth ≈ 107cm/s
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Intervalley transfer mechanism in GaAs

Higher effective mass,
low mobility

Lower effective mass,
high mobilityAt higher E  lower 

mobility  lower 
current  negative 
resistance
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Negative resistance

Oscillator: GaAs 300GHz, GaN 3THz

Negative resistance 
region

• -ve resistance used 
in design of 
oscillators.

•Oscillation 
frequency depends 
on transit time in the 
device.
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Carrier Diffusion

Co
nc

en
tr

at
io

n

x

Low concentration

Positive slope in x-direction  a flux towards → negative-x direction

High concentration
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Diffusion current density

D: diffusion coefficient

for holes

for electrons

32



      Department of Microelectronics and Computer Engineering

03/10/08

l=average mean free path 

l = (vth + vdr) τ cp

If  E=0, vdr=0

l=vth τcp

Diffusion coefficient (I)

Electron concentration versus distance.
33
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

Diffusion coefficient (II)

½ n(-l)(vth)

½ n(l)(-vth) ½ n(l)(vth)

½ n(-l)(-vth)

34

= sum of electron flow in +x direction at x=-l and electron flow in –x direction at x=l
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Taylor expansion of n(-l) en n(+l) at x = 0:

n(+l) = + …...

Diffusion coefficient (III)
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D: diffusion coefficient = vthl (cm2/s)=vth
2 τcp

Diffusion coefficient (IV)
Recall that 
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



Note

For holes:
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Diffusion of (a) electrons and (b) holes in a density gradient
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DRIFT DIFFUSION

Generalized current Density Equation -

Total Current Density

39



      Department of Microelectronics and Computer Engineering

03/10/08

Diffusion of electrons

Formation of electric field

Prevents further diffusion

40

Consider a case where donor 
concentration increases in x-direction

•Due to electric field  potential difference across the device
•In the region at lower potential  EF-EFi higher

If a semiconductor is non-uniformly doped?
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Potential:

Induced Electric Field Ex

Assuming Electron concentration Donor concentration≈

Electric field
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Take the derivative
with respect to x

Recall

Taking log

Electric field
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n,p

Assume n-graded semiconductor material in thermal equilibrium:

Consider the general current density equation:

The Einstein Relation

Assuming n≈Nd
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[                  ]

Substituting

0 because ≠
dx

dNd
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Similarly
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The Hall effect
• n- or p-type, carrier concentration and mobility can be 

experimentally measured. 
• Electric and magnetic fields are applied to a 

semiconductor. 
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F = qvx x Bz

The Hall Effect (Lorentz force)

Buildup of carriers here

Hall voltage
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• Due to magnetic field, both electrons and holes experience a force in 
–y direction.

• In n-type material, there will be a build up of –ve charge at y=0 and 
in p-type material, there will be a build up of +ve charge.

• The net charge induces a electric force in y-direction opposing the 
magnetic field force and in steady state they will exactly cancel each 
other.
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Ey = vxBz

Hall Voltage:

49

VH  = EyW=vxWBz
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For p-type material:

For n-type material:

For n-type material VH  will be -ve  n will still be +ve !

50

( )( )
x x

x
J Iv
ep ep Wd

= =

How to determine n-type or p-type & doping concentration?

VH will be +ve

VH will be -ve
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How can you determine μn, 
μp ?

56
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Summary
• Drift  net movement of charge due to electric field.

• Drift current =
 

• Mobility (μ)  lattice and impurity scattering 

• Mobility due to lattice scattering 
• Mobility due to impurity scattering
 

• Ohms law  

• Drift velocity saturates at high electric field  velocity 
saturation
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( )drf n pJ e n p Eµ µ= +
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Summary

• Some semiconductors  mobility μ reduces at high E  
negative resistance  used in design of oscillators.

• Diffusion current 

• Einstein relation  relation between diffusion coefficient and
    mobility  

• Hall effect  can be used to determine semiconductor type, 
doping concentration and mobility
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