Chapter 5

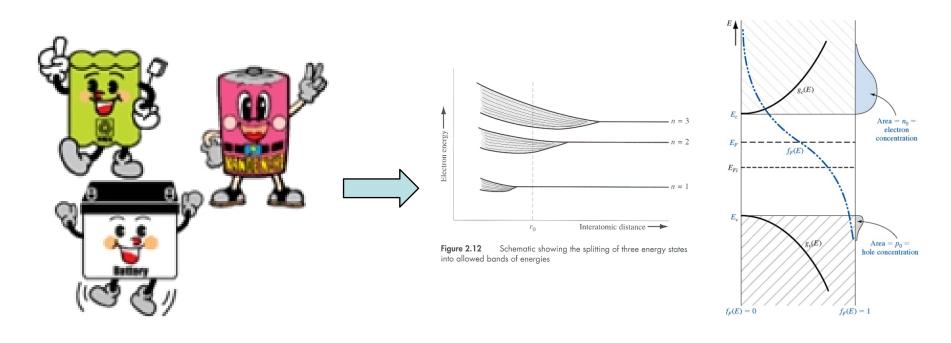
Carrier Transport Phenomena

03/10/08

TUDelft

1

We now study the effect of external fields (electric field, magnetic field) on semiconducting material



03/10/08

2

Objective

- Discuss drift and diffusion current densities
- Explain why carriers reach an average drift velocity
- Discuss mechanism of lattice and impurity scattering
- Define mobility, conductivity and resistivity
- Discuss temperature and impurity dependence on mobility and velocity saturation
- State the Einstein relation
- Describe the Hall effect

Drift current

Electric field \rightarrow force on electrons and holes

Free states in conduction and valence band

4

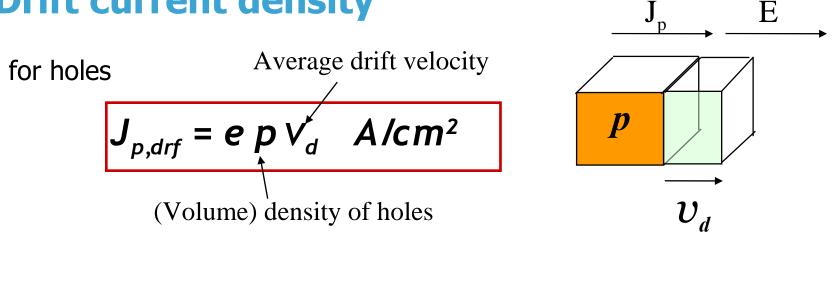
Delft

net movement of electrons and holes

Net movement of charge due to electric field is called drift.

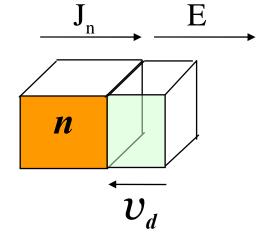
03/10/08

Drift current density



for electrons

$$J_{n,drf} = -e n V_d A/cm^2$$



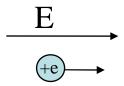
5

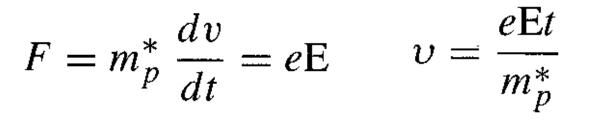
Delft

E

03/10/08

Velocity of the particles





 $v \rightarrow$ drift velocity of the hole in the electric field

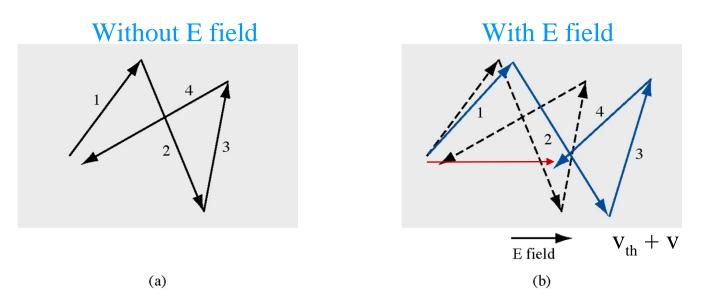
So does velocity monotonically increase with time?

6

Department of Microelectronics and Computer Engineering

03/10/08

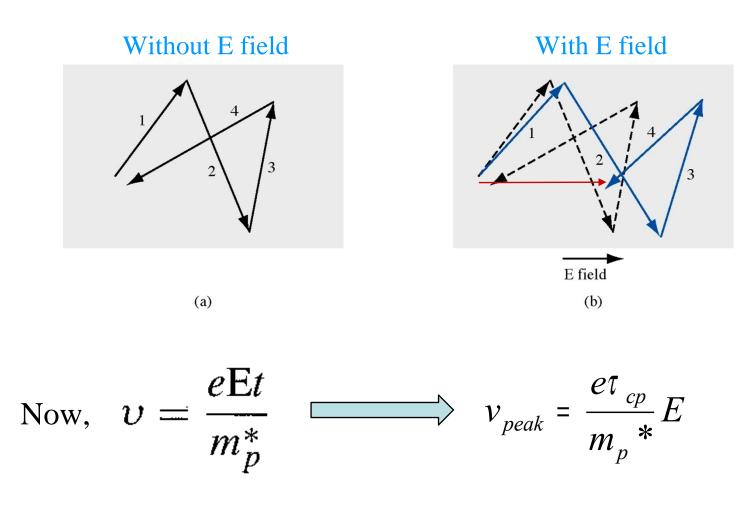
Thermal and drift velocities



- $^{\bullet}$ Even in the absence of E-field the holes have random thermal velocity (v_th)
- They collide with ionized impurity atoms and thermally vibrating lattice atoms.
- Let $\tau_{cp} \rightarrow$ mean time between collisions.
- with E-field \rightarrow net drift of holes in the direction of the E-field
- net drift velocity is small perturbation on random thermal velocity.
- so τ_{cp} remains almost unchanged even in the presence of E-field.

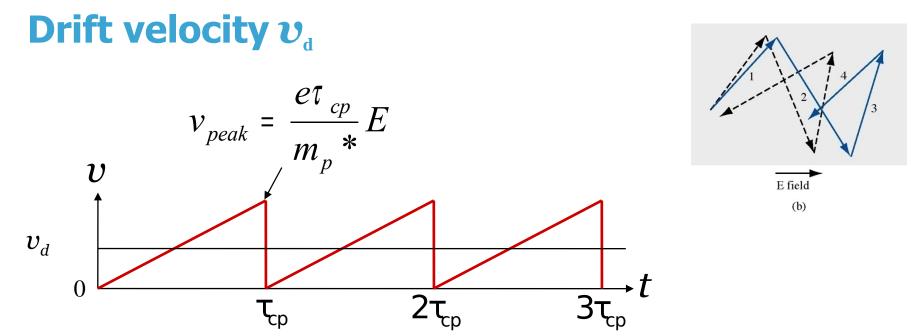
TUDelft

Thermal and drift velocities



03/10/08

Department of Microelectronics and Computer Engineering



Average drift velocity =
$$\langle v_d \rangle = \frac{1}{2} \left(\frac{e\tau_{cp}}{m_p^*} \right) E$$

up (mobility)

Using more accurate model including the effect of statistical distribution,

9

 $\left(\frac{m_p^*}{m_p}\right)^{\mathrm{E}}$

 $\langle v_d \rangle =$

Department of Microelectronics and Computer Engineering

03/10/08

$$v_d = \mu E$$

For holes: $\mu_p \rightarrow hole mobility$

$$J_{p \mid drf} = (ep)v_{dp} = e\mu_p p \mathbf{E}$$

For electrons:
$$\mu_n \rightarrow electron \ mobility$$
 $\upsilon_{dn} = -\mu_n E$
$$J_{n \mid drf} = (-en)(-\mu_n E) = e\mu_n nE$$

03/10/08

10

$\mu = v_d / \mathbf{E} \qquad \text{Unit: } \mathrm{cm}^2 / \mathrm{Vs}$

	μ _n (cm²/V-s)	μ _p (cm²/V-s)	
Silicon	1350	480	
Gallium Arsenide	▶ 8500	400	
Germanium	/ 3900	≈ 1900	
	m _n */m _o	m _p */m _o	$e \tau_{cn}$
Silicon	1.08	0.56	
Gallium Arsenide	0.067	0.48	$\frac{\mu_n}{m_n^*}$
Germanium	0.55	0.37	

03/10/08

TUDelft

Two main scattering mechanisms -

- Lattice scattering or phonon scattering
- Impurity scattering

03/10/08

12

Phonon Scattering

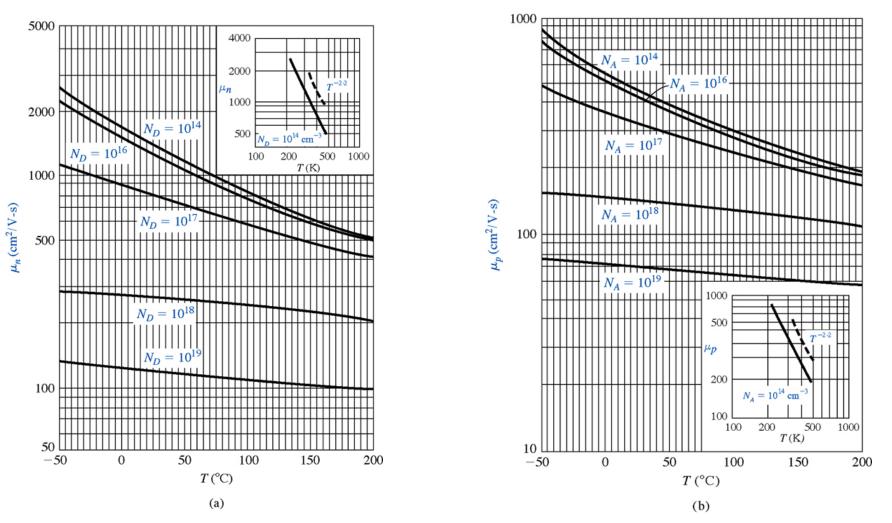
Phonons are lattice vibrations (Atoms randomly vibrate about their position @ T>0K)

Lattice vibration causes a local volume change and hence lattice constant change. Bandgap generally widens with a smaller lattice constant. Disruption of valence and conduction band edges scatters the carriers.

•Mobility due to lattice scattering vibration of atoms also increases)

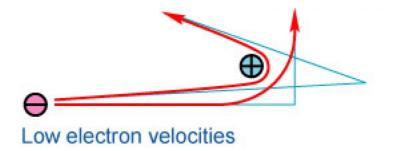
 $\mu_L \propto T^{-\frac{3}{2}}$ (as temp increases

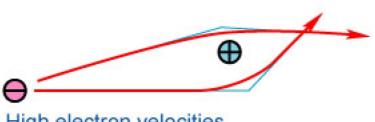
03/10/08



(a) Electron and (b) Hole mobilities in Si vs. T at different doping concentrations. (Inserts show dependence for almost intrinsic Si)

Ionized impurity scattering





High electron velocities

Scattering due to coulomb interaction between electrons/holes and ionized impurities.

T increases \rightarrow thermal velocity v_{th} increases, so less time spent for scattering $\rightarrow \mu_{I} \propto T^{n}$ $\mu_I \propto \frac{T^{+3/2}}{N_I}$

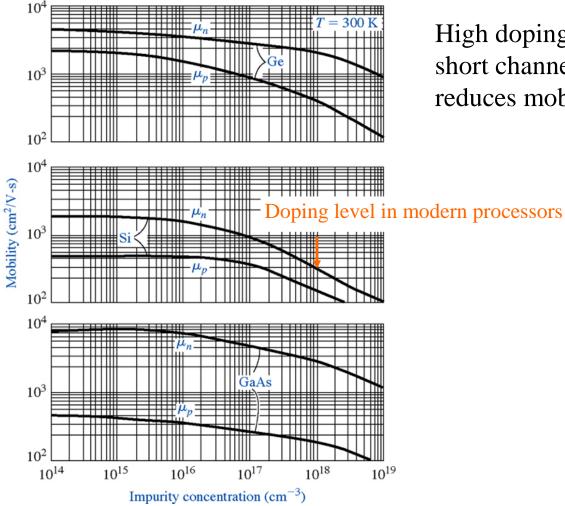
 $N_I = N_d^+ + N_a^-$

15

03/10/08

Department of Microelectronics and Computer Engineering

N_I increases → the scattering chance increases → $\mu_{I^{\propto}} \frac{1}{N_{r}}$



High doping is required to overcome short channel effects even though it reduces mobility.

Electron and Hole mobility vs. impurity concentration.

03/10/08

TUDelft

How to combine mobility effects?

- \mathbf{T} : average time between two collisions with dopant atoms
- **T**: average time between two collisions with "vibrating" lattice points $\frac{d t}{\tau_1}$: Number of collisions in time dt due to impurity scattering
- $\frac{d t}{\tau_{l}}$: Number of collisions in time dt due to lattice scattering

Total number of collisions in dt:
$$\frac{dt}{\tau} = \frac{dt}{\tau_I} + \frac{dt}{\tau_L}_{e\tau_{cr}}$$

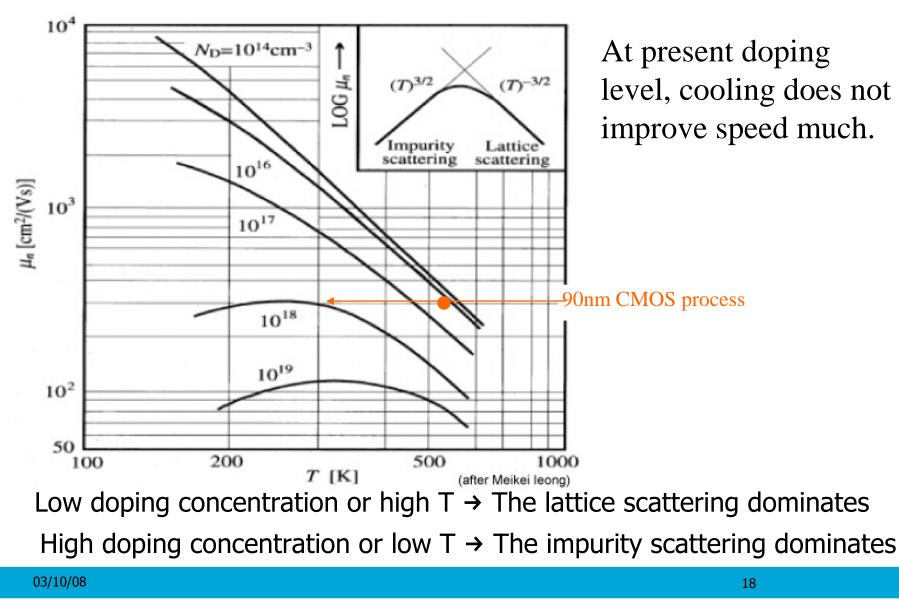
$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_L}$$

 $\mathbf{\mu}_n = \frac{-\epsilon_n}{m_n^*}$

17

03/10/08

Electron mobility of Si vs. T for various Na



^{CU}Delft

Drift current density

$$J_{n \mid d r f} = e \mu n E \qquad \mu = \frac{e \tau_{c}}{m^{*}}$$

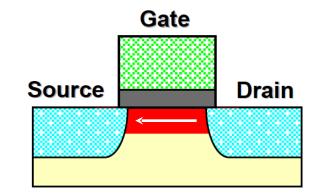
^ **/**

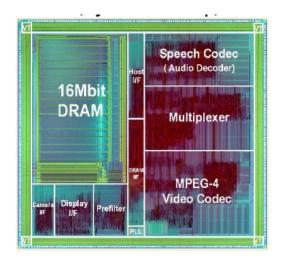
• J increases then

03/10/08

- cut-off frequency increases
- circuit density increases

How can we increase J?

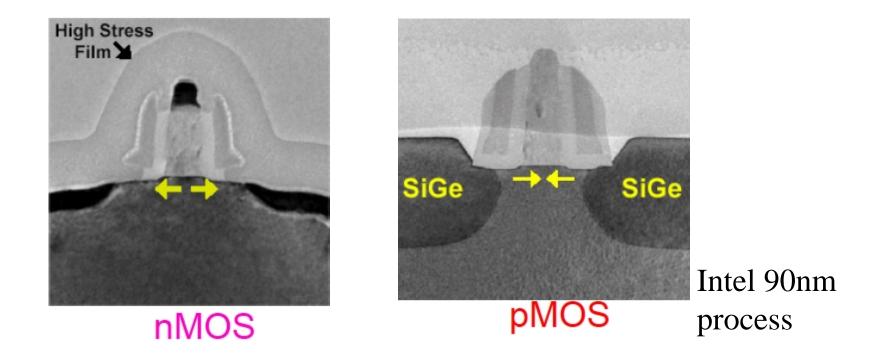




How can we increase J?

- Increase mobility
 - Strained silicon \rightarrow effective mass \downarrow , mobility \uparrow
 - GaAs or Ge as semiconducting material
- Increase electric field
 - Shorter gate length

Strained Si



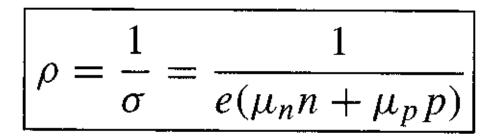
- Strain decreases the effective mass, increasing the mobility
- already been used for production

Conductivity

$$J_{drf} = e(\mu_n n + \mu_p p)\mathbf{E} = \sigma \mathbf{E}$$

$$\sigma = e\mu_n n + e\mu_p p$$

 $\sigma \rightarrow conductivity$ Units $\rightarrow (\Omega - cm)^{-1}$



ρ→resistivity

Units $\rightarrow \Omega$ -cm

03/10/08

22

Delft

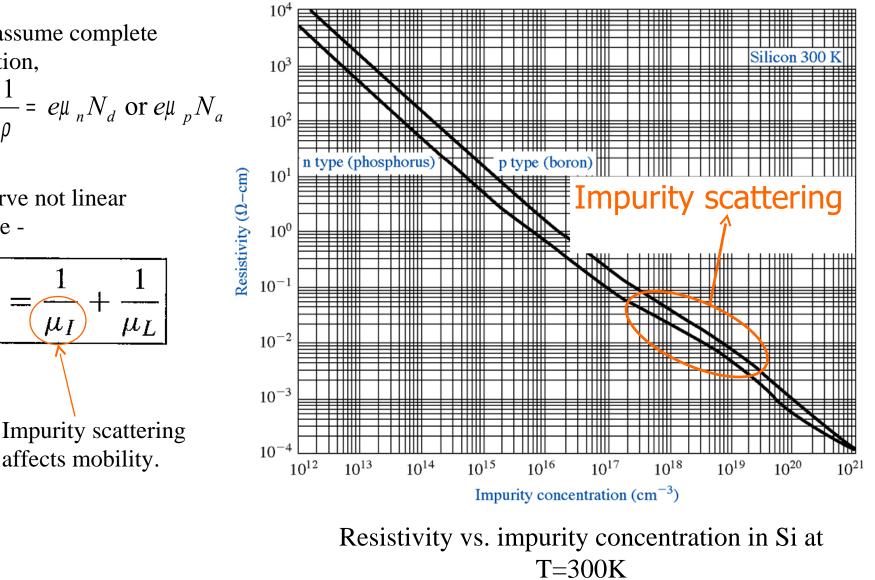
If we assume complete ionization,

$$\sigma = \frac{1}{\rho} = e\mu_n N_d \text{ or } e\mu_p N_a$$

But curve not linear because -

 μ

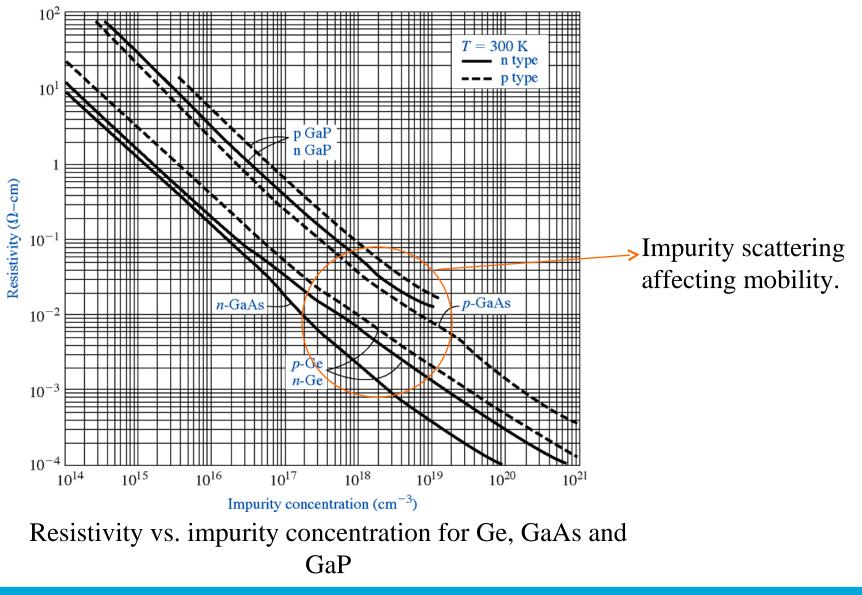
 μ_I



23

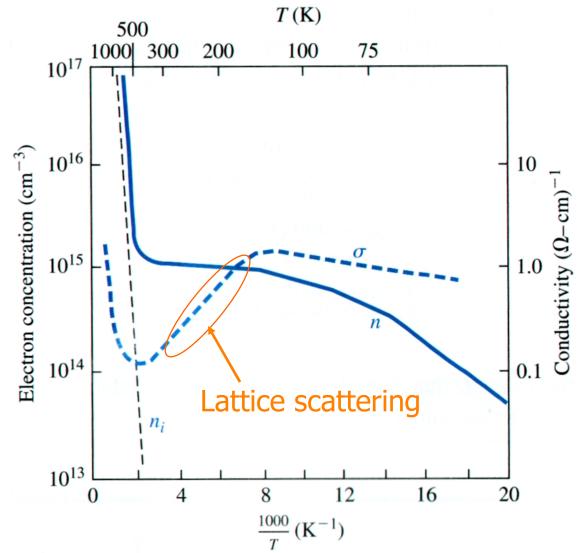
ruDelft

03/10/08



03/10/08

Electron concentration and conductivity vs. 1/T



03/10/08

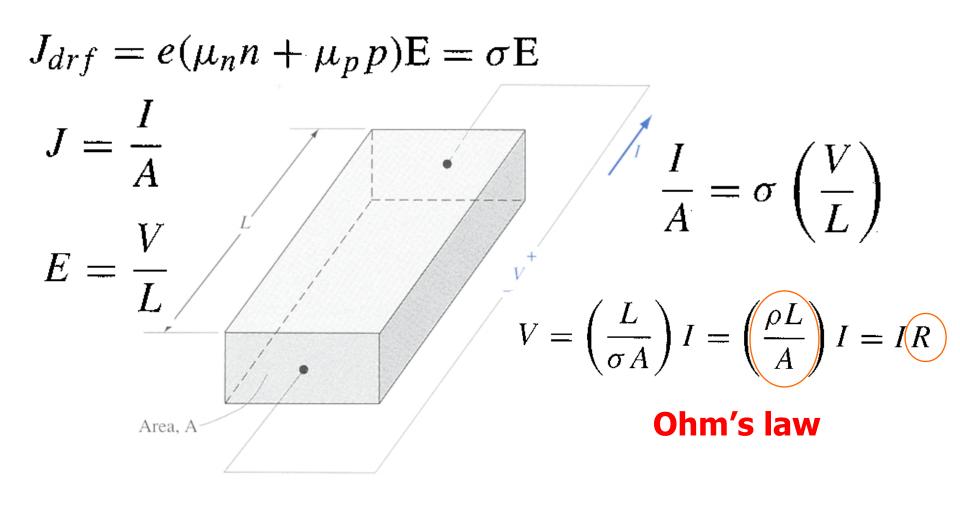
Electron concentration and conductivity vs. 1/T

• Assuming a n-type material with donor doping $N_d >> ni$,

 $\sigma = e(\mu_n n + \mu_p p) \approx e\mu_n n$ n \rightarrow electron concentration

- If we also assume complete ionization, $\sigma = \frac{1}{\rho} = e\mu_n N_d$ Mid temp \rightarrow complete ionization \rightarrow n constant at N_d but μ reduces with temp due to lattice scattering \rightarrow so conductivity drops.
- •At high temperature, intrinsic carrier concentration increases and dominates both n and $\boldsymbol{\sigma}$
- •At low temp, due to freeze-out both n and σ reduce

Ohms Law:



03/10/08

27

Department of Microelectronics and Computer Engineering

TUDelft

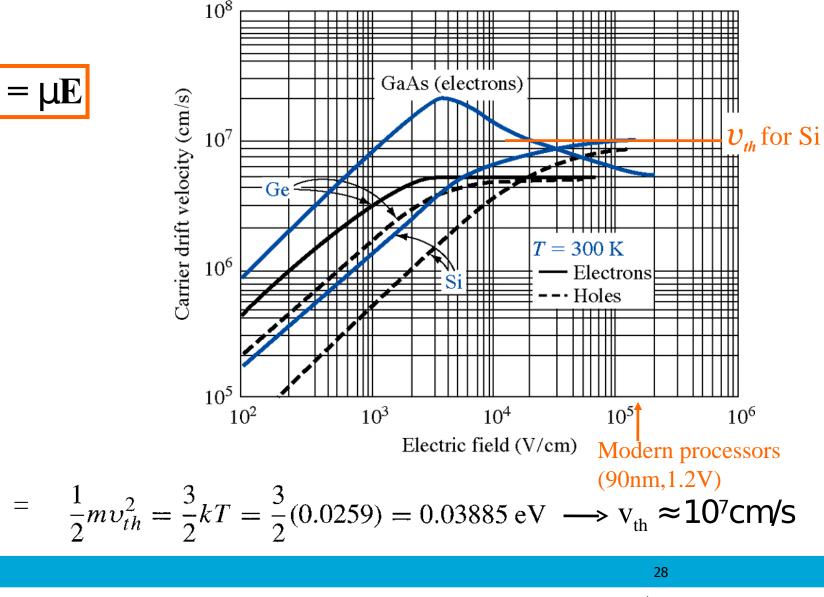
Velocity saturation

Random

thermal

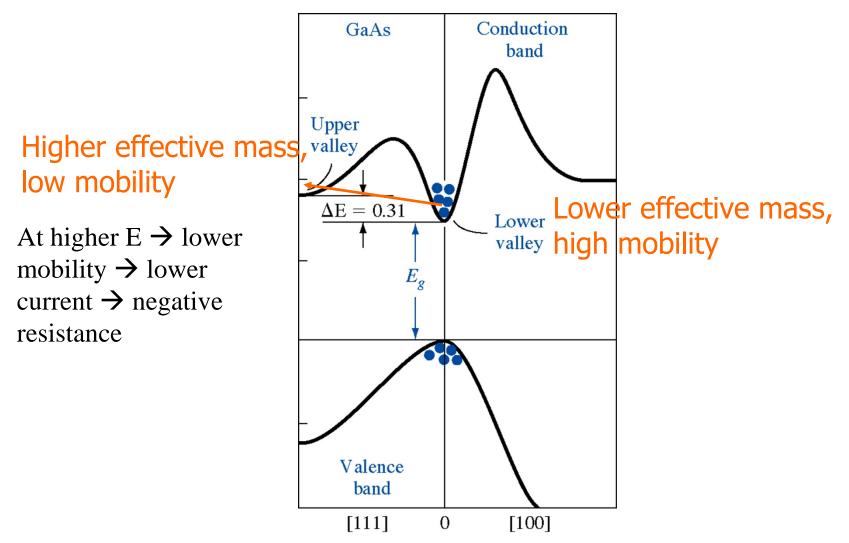
energy

03/10/08



TUDelft

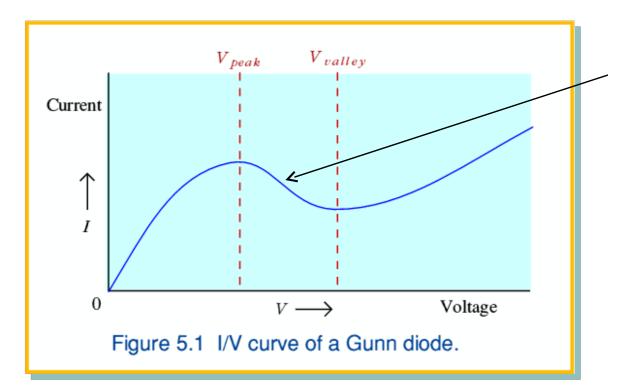
Intervalley transfer mechanism in GaAs



03/10/08

TUDelft

Negative resistance



Oscillator: GaAs 300GHz, GaN 3THz

Negative resistance region

• -ve resistance used in design of oscillators.

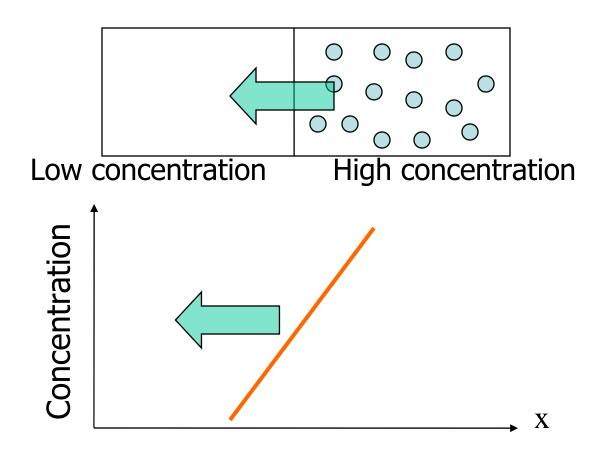
•Oscillation frequency depends on transit time in the device.

03/10/08

30

Delft

Carrier Diffusion



Positive slope in x-direction \rightarrow a flux towards negative-x direction

31

ľUDelft

03/10/08

Diffusion current density

for holes

$$J_{px\,|\,dif} = -eD_p\,\frac{dp}{dx}$$

for electrons

$$J_{nx\,|\,dif} = eD_n \, \frac{dn}{dx}$$

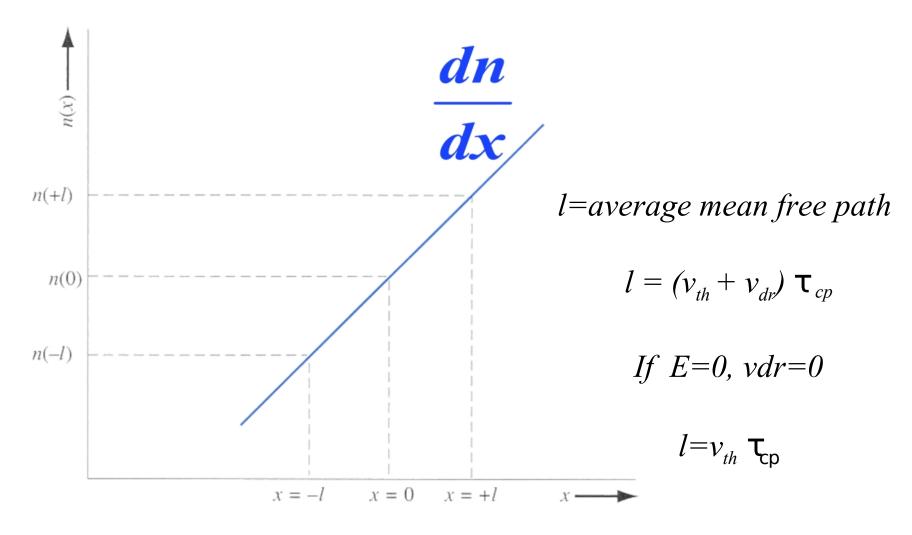
$$J_{(n,p)x|dif} = eD_n \frac{dn}{dx} - eD_p \frac{dp}{dx}$$

03/10/08

32

D: diffusion coefficient

Diffusion coefficient (I)



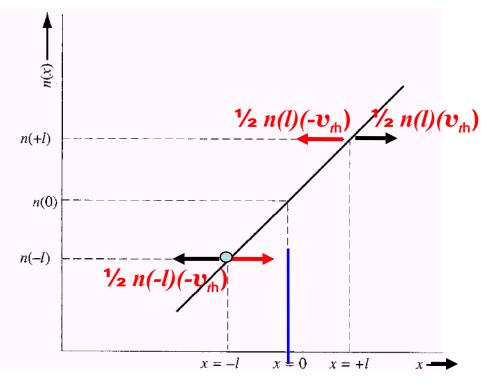
33

Delft

Electron concentration versus distance.

03/10/08

Diffusion coefficient (II)



 $F_n \rightarrow$ net rate of electron flow in the +x direction at x = 0

= sum of electron flow in +x direction at x=-1 and electron flow in -x direction at x=1 $F_n = \frac{1}{2}n(-l)\upsilon_{th} - \frac{1}{2}n(+l)\upsilon_{th} = \frac{1}{2}\upsilon_{th}[n(-l) - n(+l)]$

03/10/08

Department of Microelectronics and Computer Engineering

Diffusion coefficient (III)

$$F_n = \frac{1}{2}n(-l)\upsilon_{th} - \frac{1}{2}n(+l)\upsilon_{th} = \frac{1}{2}\upsilon_{th}[n(-l) - n(+l)]$$

Taylor expansion of n(-l) en n(+l) at x = 0:

$$n(+l) = n(0) + l \frac{dn}{dx} + \dots$$

$$F_n = \frac{1}{2}\upsilon_{th} \left\{ \left[n(0) - l \frac{dn}{dx} \right] - \left[n(0) + l \frac{dn}{dx} \right] \right\}$$
$$F_n = -\upsilon_{th} l \frac{dn}{dx}$$

03/10/08

Department of Microelectronics and Computer Engineering

35

TUDelft

Ŋ

Diffusion coefficient (IV)

Recall that
$$F_n = -\upsilon_{th} l \frac{dn}{dx}$$

The current is $J = -eF_n = +e\upsilon_{th} l \frac{dn}{dx}$

D: diffusion coefficient = $v_{th}l$ (cm²/s)= v_{th}^2 T_{cp}

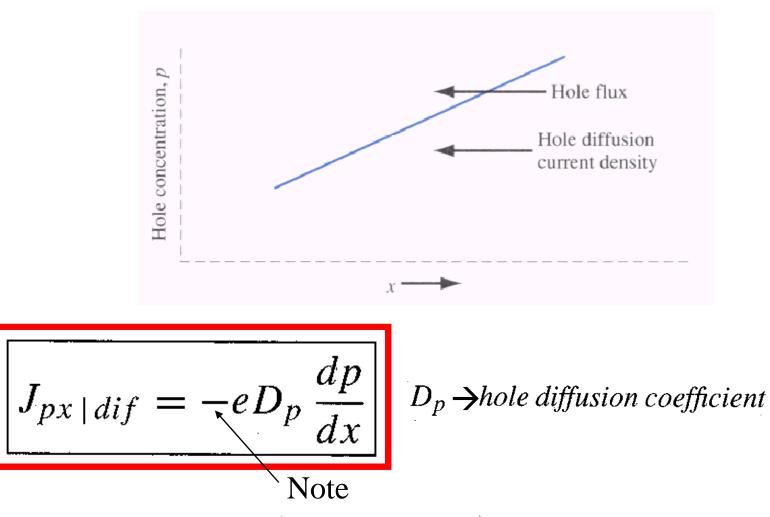
1

$$J_{nx\,|\,dif} = eD_n\,\frac{dn}{dx}$$

03/10/08

TUDelft

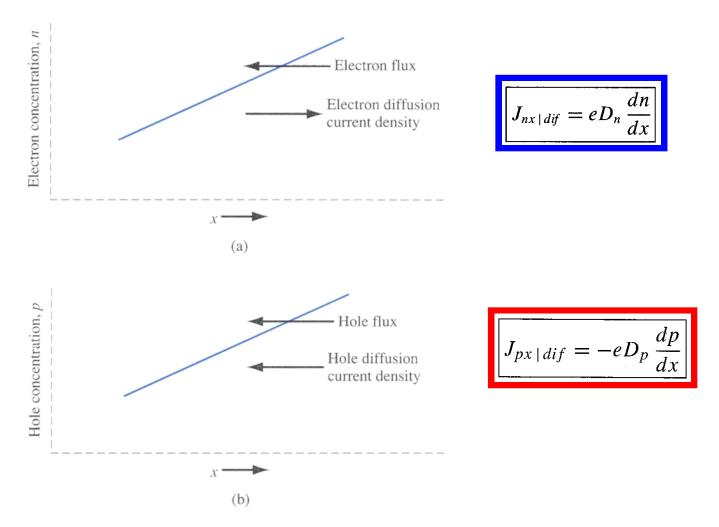
For holes:



 $J_{px \mid dif}$ \rightarrow hole diffusion current density for one-dimensional case

03/10/08

Delft



Diffusion of (a) electrons and (b) holes in a density gradient

03/10/08

38

TUDelft

Total Current Density

$$J = en\mu_{n}E_{x} + ep\mu_{p}E_{x} + eD_{n}\frac{dn}{dx} - eD_{p}\frac{dp}{dx}$$

DRIFT DIFFUSION

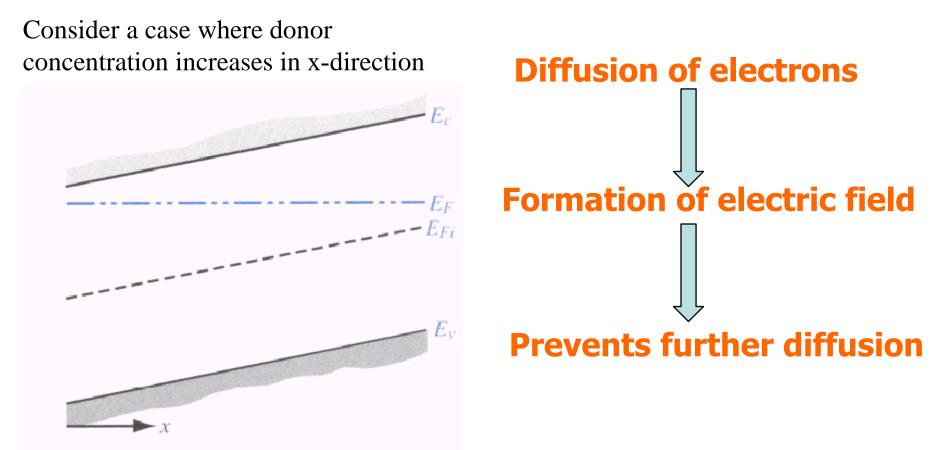
Generalized current Density Equation -

$$J = en\mu_n \mathbf{E} + ep\mu_p \mathbf{E} + eD_n \nabla n - eD_p \nabla p$$

03/10/08

Department of Microelectronics and Computer Engineering

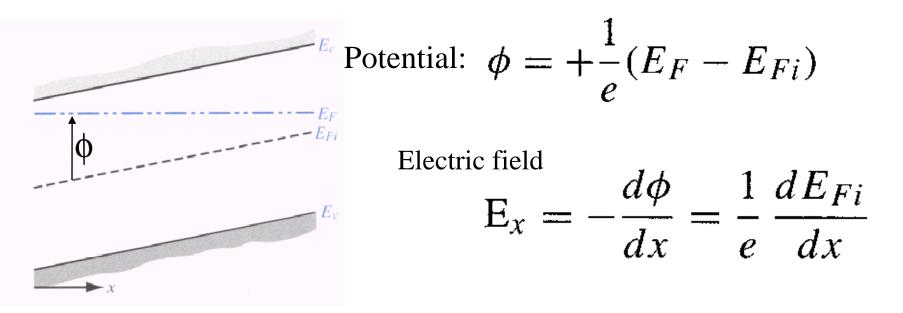
If a semiconductor is non-uniformly doped?



•Due to electric field \rightarrow potential difference across the device •In the region at lower potential $\rightarrow E_F - E_{Fi}$ higher

03/10/08

Induced Electric Field Ex



Assuming Electron concentration \approx Donor concentration

$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \approx N_d(x)$$

03/10/08

Department of Microelectronics and Computer Engineering

41

Delft

Recall
$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \approx N_d(x)$$

Taking log $E_F - E_{Fi} = kT \ln\left(\frac{N_d(x)}{n_i}\right)$

Take the derivative with respect to x

03/10/08

$$-\frac{dE_{Fi}}{dx} = \frac{kT}{N_d(x)}\frac{dN_d(x)}{dx}$$

Electric field
$$E_x = -\left(\frac{kT}{e}\right)\frac{1}{N_d(x)}\frac{dN_d(x)}{dx}$$

42

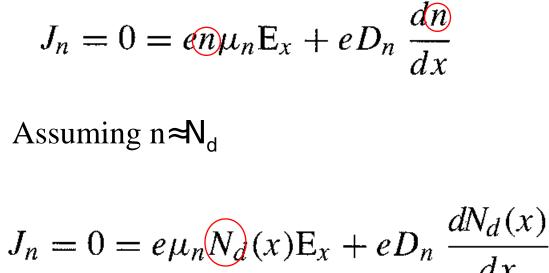
TUDelft

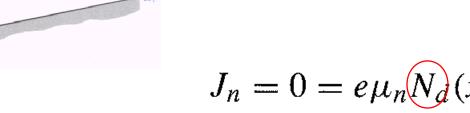
The Einstein Relation

Consider the general current density equation:

$$J_{n,p} = en\mu_n \mathbf{E}_x + ep\mu_p \mathbf{E}_x + eD_n \frac{dn}{dx} - eD_p \frac{dp}{dx}$$

Assume n-graded semiconductor material in thermal equilibrium:





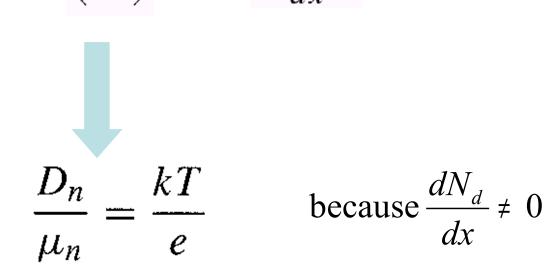
43

03/10/08

Substituting
$$E_x = -\left(\frac{kT}{e}\right)\frac{1}{N_d(x)}\frac{dN_d(x)}{dx}$$

$$0 = -e\mu_n N_d(x) \left(\frac{kT}{e}\right) \frac{1}{N_d(x)} \frac{dN_d(x)}{dx} + eD_n \frac{dN_d(x)}{dx}$$

$$0 = \left[-e\mu_n\left(\frac{kT}{e}\right) + eD_n\right]\frac{dN_d(x)}{dx}$$



Department of Microelectronics and Computer Engineering

 $\frac{D_n}{\mu_n} = \frac{kT}{e}$

kT $\frac{D_p}{\mu_p} = \frac{kT}{e}$ Similarly

Einstein relation
$$\longrightarrow \qquad \qquad \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e}$$

TUDelft

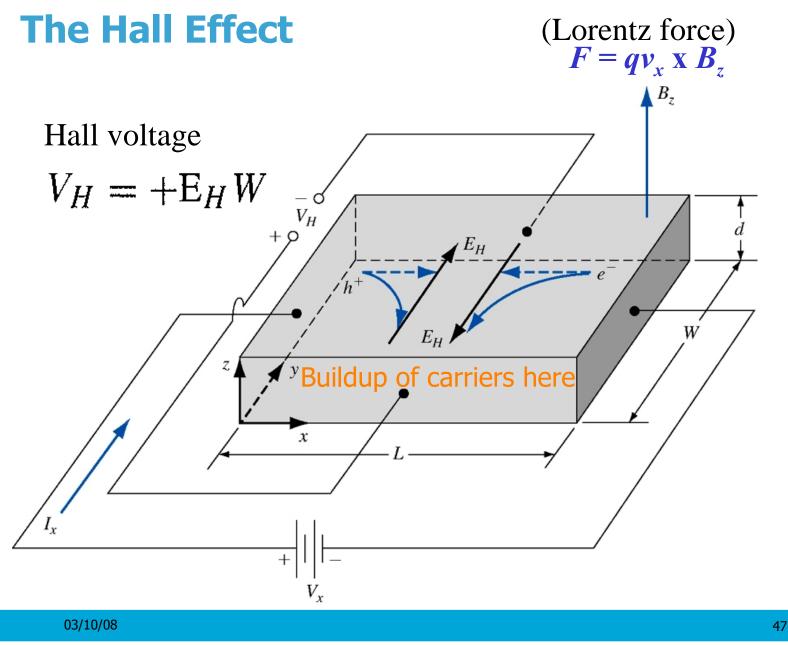
The Hall effect

- n- or p-type, carrier concentration and mobility can be experimentally measured.
- Electric and magnetic fields are applied to a semiconductor.

46

Department of Microelectronics and Computer Engineering

03/10/08

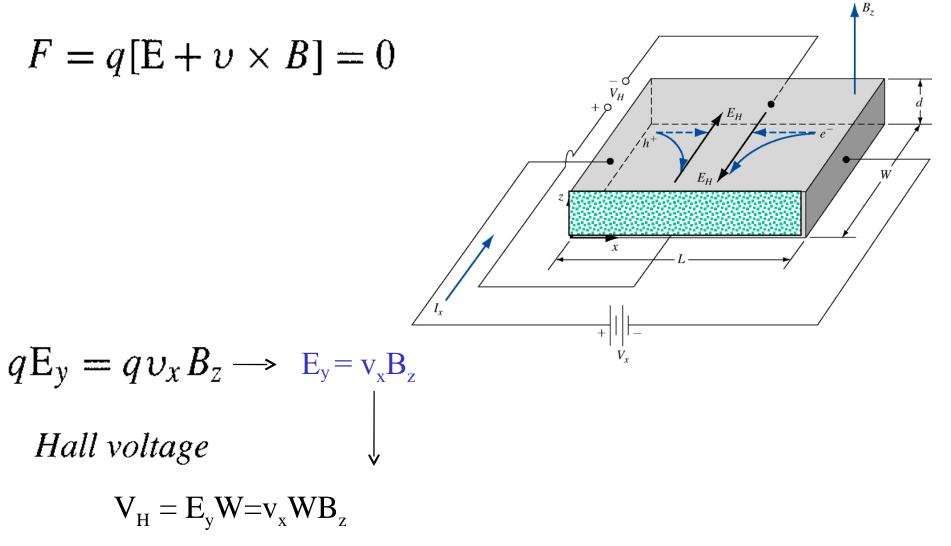


*f*UDelft

• Due to magnetic field, both electrons and holes experience a force in –y direction.

• In n-type material, there will be a build up of –ve charge at y=0 and in p-type material, there will be a build up of +ve charge.

• The net charge induces a electric force in y-direction opposing the magnetic field force and in steady state they will exactly cancel each other.



Department of Microelectronics and Computer Engineering

49

TUDelft

How to determine n-type or p-type & doping concentration?

For p-type material:
$$V_H$$
 will be +ve
 $v_x = \frac{J_x}{ep} \quad \frac{I_x}{(ep)(Wd)} \implies V_H = \frac{I_x B_z}{epd} \implies p = \frac{I_x B_z}{edV_H}$

50

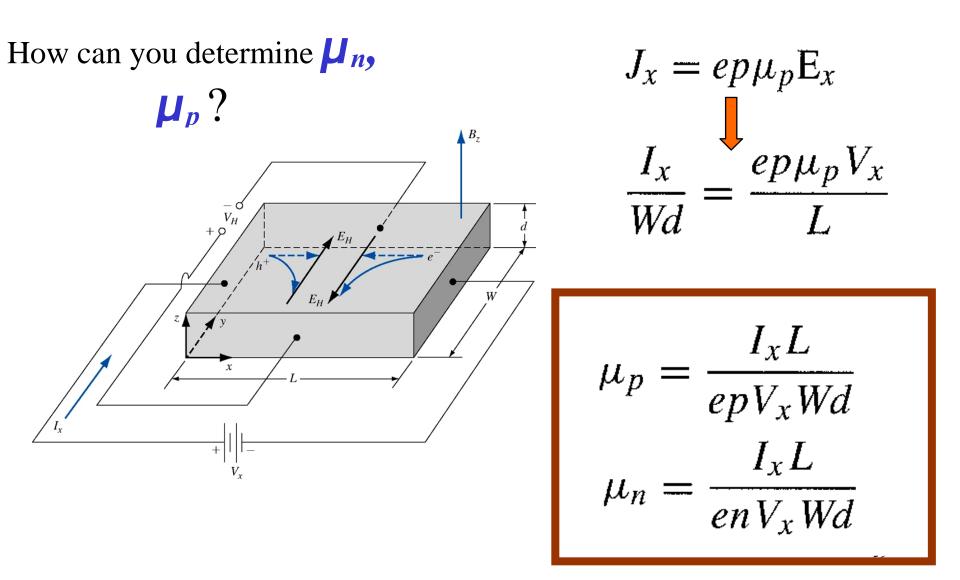
TUDelft

For n-type material: V_H will be -ve

$$V_H = -\frac{I_x B_z}{ned} \longrightarrow n = -\frac{I_x B_z}{ed V_H}$$

For n-type material V_{H} will be -ve \rightarrow n will still be +ve !

03/10/08



51

ruDelft

Summary

- Drift \rightarrow net movement of charge due to electric field.
 - Drift current = $J_{drf} = e(n\mu_n p_p^+)E$
- Mobility (μ) \leftarrow lattice and impurity scattering
 - Mobility due to lattice scattering $\mu_L \propto T^{-\frac{3}{2}}$
 - Mobility due to impurity scattering $\mu_I \propto \frac{T^2}{N_r}$
- Ohms law $\rightarrow V = \frac{L}{\sigma A}I \frac{\rho L}{A} = I RI =$
- Drift velocity saturates at high electric field \rightarrow velocity saturation

52

03/10/08

Summary

- Some semiconductors → mobility µ reduces at high E → negative resistance → used in design of oscillators.
- Diffusion current $J_{diff} = eD_n \frac{dn}{dx} eD_p \frac{dp}{dx}$
- Einstein relation \rightarrow relation between diffusion coefficient and mobility $\rightarrow \frac{D_n}{\mu_n} = \frac{D_p}{p} \frac{kT}{e}$
- Hall effect → can be used to determine semiconductor type, doping concentration and mobility

