Chapter 5

Carrier Transport Phenomena
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We now study the effect of external fields (electric field,
magnetic field) on semiconducting material
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Figure 2.12 Schematic showing the splitting of three energy states 8AE) g r:jnccf:tumion
into allowed bands of energies
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Objective

* Discuss drift and diffusion current densities

* Explain why carriers reach an average drift velocity
e Discuss mechanism of lattice and impurity scattering
* Define mobility, conductivity and resistivity

* Discuss temperature and impurity dependence on
mobility and velocity saturation

o State the Einstein relation
e Describe the Hall effect
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Drift current

Electric field = force on e ectrons and holes

Free states in conduction and
valence band

v
net movement of

electrons and holes

Net movement of charge due to electric field is called drift.
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Drift current density J E

for holes Average drift velocity

/
Joar=€ P vj A/cm?

(Volume) density of holes

\4
\4

for electrons

J,as=-€n Vv, Alcm?
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Velocity of the particles

E >
dv eEt
=m* — = U=
F m, - ebB m;

v = drift velocity of the hole in the electric field

So does velocity monotonically increase with time?
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Thermal and drift velocities

Without E field With E field

E field
(a) (b)

* Even in the absence of E-field the holes have random thermal velocity
(Vi)

* They collide with ionized impurity atoms and thermally vibrating lattice
atoms.

- Let ¢, - mean time between collisions.

« with E-field = net drift of holes in the direction of the E-field
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Thermal and drift velocities

Without E field With E field

(a) (b)

eEr er,
Now, U = PV pea ° E
m* *
p p
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Drift velocity v,

vpeak - m—q;E
v / e
U, / / /
: % 2z, 3,

/Hp (mobility)

L

Using more accurate model including the (0g) = ( €Tcp )

E

effect of statistical distribution, m ?;
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Mobility:

‘vd — “E‘

For holes: ., 3 hole mobility

Jp\arf = (ep)vap = epp pE

For electrons: 1, 5 electron mobility Udn = —UnE

Tnydrs = (—en)(—pinE) = eptunE
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u=v,/E Unit: cm2/V's

H, (cm?/N-s) u, (Ccm?N-s)
Siicon 1350 480
Gallium Arsenide >...8500.. 400
Germanium 3900 <1900

* %*

m_ */m, m_*/m, e_ccn
sicon — \_ 1.08 056 flp = —
Gallium Arsenide ~.0.067.- 0.48 | "y,
Germanium 0.55 ...0.37.- '
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Scattering:

Two main scattering mechanisms -
* Lattice scattering or phonon scattering

* Impurity scattering
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Phonon Scattering

Phonons are lattice vibrations (Atoms randomly vibrate about their position @ T>0K)

oo e e - -e— " —e—1"—e- e Te- e THee

Lattice vibration causes a local Bandgap generally Disruption of
volume change widens with a valence and
and hence lattice constant =—— smaller lattice ™ — conduction band
change. constant. edges scatters

the carriers.

3

*Mobility dueto lattice scattering 4, U T 2 (as temp increases
vibration of atoms also increases)
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(a) Electron and (b) Hole mobilitiesin Si vs. T at different doping concentrations.
(Inserts show dependence for amost intrinsic Si)
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Ionized impurity scattering

-
/9
S/ S
Low electron velocities High electron velocities
Scattering due to coulomb interaction between |
electrons/holes and ionized impurities. T+3/2
. . . Hy X
T increases - thermal velocity vy, increases, | Ny
so less time spent for scattering » (U T
— NT —
N; increases - the scattering chance Ni = Nd + Na

increases > # /! %\’1
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10*

£, ‘it High doping is required to overcome
o LT~ > T T short channel effects even though it
S reduces mobility.
10 .
10* bﬁ
;é o Doping level in modern processors
210 i ===
® e ﬁhh'"‘x.“""
(L wi;?_& i
I P
10° = i &{1‘.&5 F T
Hp |
1
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Impurity concentration (cm )

Electron and Hole mobility vs. impurity concentration.
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|[How to combine mobility effects?|

'q : average time between two collisions with dopant atoms

TI_ . average time between two collisions with “vibrating" lattice points

: Number of collisions in time dt due to impurity scattering

~||Q_

I
| : Number of collisions in time dt due to lattice scattering

| dt dt dt

Total number of collisionsin dt: - 5 j

[ =10

—~

143
b5
L1 1
T )
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Electron mobility of Si vs. T for various Na

10* - 1
N\ Mo=10"cm | T Nl At present d0p| ng
| § 7\73'? level, cooling does not
i [ :
I ooy e | /TPYOVE speed much.
28 -\\.‘ 10 scatlening %Jucn[ng
,:5 10" |
E 10'7
- -
g =—-90nm CMOS process
2 10" —“.\ :
50
100 200 500 1000

T IK] (after Meikei laong)

Low doping concentration or high T = The lattice scattering dominates

High doping concentration or low T - The impurity scattering dominates
B

]
TUDelft
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Drift current density

Jn|drr:eHnE = —

* Jincreases then
 cut-off frequency increases
e circuit density increases

How can we increase J?
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How can we increase J?

* Increase mobility
« Strained silicon = effective mass" , mobilityT
* GaAs or Ge as semiconducting material

* Increase electric field

* Shorter gate length
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Strained Si

Intel 90Nm

PMOS Process

nMOS

 Strain decreases the effective mass, increasing the mobility
» already been used for production
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Conductivity

Tarf = €(pnn + ppp)E = oE

0 =ey,n +eup

o > conductivity
Units 2 (Q-cm)?

1

P Sresistivity

p:

1
E; B e(upn + p,pp) Units > Q-cm
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If we assume complete
loni zation,

1
g=—=ell,N,orell N,

p

But curve not linear
because -

1

7!

R— I

1 1

M1 ML
—

\

| mpurity scattering
affects mobility.

Resistivity ({1—cm)

10* ===
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10° ™ | /A
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™
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Impurity concentration (cm ™)
Resistivity vs. impurity concentration in Si at
T=300K
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Electron concentration and conductivity vs. 1/T
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Electron concentration and conductivity vs. 1/T

« Assuming a n-type material with donor doping N, >> ni,

g = e(unn+ ,Upp)= el n n->electron concentration

* If we also assume completeionization, 7 - % =N,
Mid temp > complete ionization = n constant at N but 1 reduces

with temp due to lattice scattering = so conductivity drops.

*At high temperature, intrinsic carrier concentration increases and
dominates both nand o

*At low temp, due to freeze-out both n and o reduce
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Ohms Law:

Area, A Ohm'S IaW
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Velocity saturation

108
— - GaAs (electrons)
vd HE “E N,

< 10 / v, for S

‘5 -

= — Ge =111 g

= s ld

5 / ,V ) T=300K

g 10 ST Qi Electrons

= —7 = - =- Holes

<

O Fé?‘ 5

L1
10° 4
10? 10° 104 10° 10°
= d Electric field (V/cm) Modern Processors
anaom 90nm, 1.2V
thema = 1 9 3 ( )7
S = kT = —(0 0259) = 0.03885eV —> V,, =107Cn/s

energy '
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Intervalley transfer mechanism in GaAs

GaAs Conduction
band

Higher effective massg

low mobility
r effective mass,
At higher E > lower ot valley high |mobility
mobility > lower i E,
current = negative
resistance
(@}

Valence

band

[111] 0 [100]

]
TUDelft
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Negative resistance

Vpeak  Vealley Negative resistance
Current i / regl on
T ' < ' * -ve resistance used
. : : in design of
| | oscillators.
0 I Vv %I Voltage
Figure 5.1 1/V curve of a Gunn diode. *Oscillation
frequency depends
on transit timein the
Oscillator: GaAs 300GHz, GaN 3THz device.
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Carrier Diffusion

O O¢p O
< P oo ,°
00, 5 ©
Low concentration High concentration

=

Concentration

. X

Positive slope in x-direction - a flux towards negative-x direction
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Diffusion current density

dp
for holes Jpxldif — er -
dn
for electrons Juxaif = eDy, " =
dn d,
S 1, xiair = €D, E—er di
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Diffusion coefficient (I)

—_—
-

—
—
=

j e e e e e e o — — — —
A [=average mean free path

n(0) | l — (vth + Vdr) TCp

If E=0, vdr=0

n(={)

[=v, T

r =] ‘=0 \ :+/_ o -

Electron concentration versus distance.
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Diffusion coefficient (II)

r_z(x) —_—

Y2 n(l)(-v,,) —/i n)(v,)

)l S —

n(0)

n(=)

X -l

F,, 2 net rate of electron flow in the +x direction at x = 0

= sum of electron flow in +x direction at x=-1 and electron flow in —x direction at x=|

1 1 1
Fn = sn(=Dum — sn(+hun = 5 Ul (=1) = n(+D)]
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Diffusion coefficient (I1I)

= —n( Doy — —n(—l—f)vrh = —Urh[”( ) @

Taylor expansion of n(-/) en n

d
n(+l)= n) +1 P .
dx
1 dan dn
F, = EW’ {[n(O) ldx} — |:n(0) | de]}

an

Fn _— l"_

Uth T
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Diffusion coefficient (IV) p
n

Recdl that F,, = —uvuspl —
dx

The currentis J = —¢F, = @
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For holes:

Hole flux

Hole diffusion
current density

Hole concentration, p

D » Shole diffusion coefficient

Note

Jpx | aif Shole diffusion current density for one-dimensional case
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Electron flux

Electron diffusion
current density

Electron concentration, i

X =

(a)

Hole flux

Hole diffusion
current density

Hole concentration, p

. A

(b)

Diffusion of (a) electrons and (b) holesin a density gradient
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Total Current Density

d
J M FD ——-——erjj—’—_

DRIFT DIFFUSION

Generalized current Density Equation -

J =enuyE+ epuyE + eDnVn —eDpVp

Department of Microelectronics and Computer Engineering T U D
elft



If a semiconductor is non-uniformly doped?

Consider a case where donor
concentration increases in xX-direction Diffusion of electrons

--—r  Formation of electric field

I

Prevents further diffusion

G R e
o b
iy "

*Dueto eectric field = potential difference across the device
Intheregion at lower potential > E--E_ higher
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Induced Electric Field Ex

;. . 1
€

[‘1’ (e " Hedtrictied
S B do 1 dEE;
E r— —_—
x = —
P dx e dx
Assuming Electron concentration ~ Donor concentration
Er—Ep;
no = n; exp ~ Ng(x)
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" Ee  F
Recal  ng = n; exp FkT F ~ Nyj(x)

N,
Taking log EF — EF:' = kT ln( d(X))
nj
Take the derivative dEp; kT dN;{x)

with respect to x —
dx Ng(x) dx

| kT 1  dNgz(x)
Electricfield £y = — | —
e ] Ng(x) dx
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The Einstein Relation
Consider the general current density equation:

Assume n-graded semiconductor material in thermal equilibrium:

/{: Jn =0 = enuE; +eD, @
dx

-
-
-
-
-
p—
——

Assuming n=N,

— AN
Jo =0 = ept{N)(x)Bx + eDy —2 2
X
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Substituting Exz—(kT) I dNg(x)

e ) Ng(x) dx

€

Oz—eunNd(x)(kT) L dNa(x) D dNa (x)

Ng(x) dx + el dx

0= [—eﬁbn(k—T) + eD, ]de (x)

€ dx

D, kT dN

—_ e because
Mn € dx

t 0
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Similarly -

Einstein relation

> — T—— L —
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The Hall effect

* n- or p-type, carrier concentration and mobility can be
experimentally measured.

 Electric and magnetic fields are applied to a
semiconductor.
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The Hall Effect (Lorentz force)
F=qv xXB,

AZ:

Hall voltage
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* Due to magnetic field, both electrons and holes experience aforce in
—y direction.

* In n-type material, there will be a build up of —ve charge at y=0 and
In p-type material, there will be abuild up of +ve charge.

* The net charge induces a electric force in y-direction opposing the
magnetic field force and in steady state they will exactly cancel each
other.
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Hall Voltage:

F=glE+vxB]=0

qu = quyB; — E,=VB, B

Hall voltage
V,, = EW=v,WB,

Department of Microelectronics and Computer Engineering -I(-; U D e I f.t



How to determine n-type or p-type & doping concentration?

|For p-type material:l V,, will be +ve

J ] Sy [, B, _ Iy B;
V.= —x - X H = >| P =
ep (ep)(Wd) epd edVy

[For n-type material:| V,, will be -ve

[ B, 1, B,
> |p =

Vg =
" C@é’d edVy

For n-type material V,, will be -ve = nwill still be +ve!
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How can you determine U 5.,

3
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Summary

* Drift > net movement of charge due to electric field.
* Driftcurrent =J,, = e(nit, p HH

* Mobility (n) < lattice and impurity scattering

 Mobility due to lattice scattering #. U T _5%
* Mobility due to impurity scattering i, O 7];[

1

e Ohmslaw > v=L1 2Ly g
g A A

 Drift velocity saturates at high electric field = velocity
saturation
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Summary

e Some semiconductors - mobility p reduces at high E >
negative resistance - used in design of oscillators.

T d d
- Diffusion current J,, = eD, =" eD, ="

dx dx

e Einstein relation - relation between diffusion coefficient and

- D, _ D, T
mobility > —+= £+ —
b, M e

» Hall effect > can be used to determine semiconductor type,
doping concentration and mobility
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