Sun wind water traffic earth life living, legends for design AR2U070 Territory (design) 5ECTS

AR0112 Civil engineering for dummies (calculations) 2ECTS

Prof.dr.ir. Taeke M. de Jong Prof.dr.ir. C. van den Akker Ir. D. de Bruin Drs. M.J. Moens Prof.dr.ir. C.M. Steenbergen Ir. M.W.M. van den Toorn

Wet networks

Distance between trenches

The necessary distance L between smallest ditches or drain pipes is determined by precipation q [m/24h], the maximally accepted height h [m] of ground water above drainage basis between drains and by soil characteristics. Soil is characterised by its permeability k [m/24h]. A simple formula is L= $2\sqrt{(2kh/q)}$.

Calculating the distance

🔀 Microsoft Excel - 03aWater.xls			
Bestand Bewerken Beeld Invoegen Opmaak Extra	D <u>a</u> ta <u>V</u> enster <u>H</u> elp		
📕 🛷 🔊 - 🐥 Arial - 10 -	B / U ≣ ≣ ≣ ፼ ╠ ≪3	£ ፼ % 00 % #3 律律 ≡ □·参·	🔺 - 🏢 Standaard 🛛 - 📮 🔈 🕒 Beveiliging 🕭 🛠 🕍 🥔 -
C1 T =			
A B C	D E F	G H I J K L I	MNOPQRS
Drain distance			
		in the second se	
2 3 Precipitation	m/24h a 0.395 •	recurrence time in De Bilt	year(mm) := exp[mm]
A Difference of waterlevel inhetween drains	mh 26 ·		505 days
5 Permeability of soil	m/24h k 199.52623	Coarse sand with gravel	
6 Talud	2.1 -	natural talud 1: 3	
7 m wid	th of bottom 2.9 💶	•	
8 Drain distance	m L 103		
9 Desired groundwater level	m -0.72 <u>- </u>	▶ no use	
10 Depth of drain	m -3.3		
0.0			
	<u> </u>		
-4.0			
15 -6.0			
16 -8.0			
17 -10.0		1000 0100 0100	0000
18	900 1200 1500	1800 2100 2400	2700 3000
19 0.0			
20 -2.0			
21 -4.0	<u> </u>		
22 -6.0			
23 -8.0			
24 -10.0	400 450		200
25 0 50	100 150	200 250	300
26 0.0			
27 -2.0			
28 -4.0			
29 -6.0			
30 -0.0			
27 0 10 20	30 40 50	60 70 80	90 100
32	410	221 1 1 1 1	
34	410	-3.3	
II ► ► ► / Mechanics / BijnWaal / Lobith / Natural	river / Artificial river / v.w.d(0) Drai	ns / Sedimentation(v) / Sea and s	
Tekenen + 🔓 🌀 AutoVormen + 🔪 🔪 🖸 🖴	4 2 > - <u>4</u> - <u>4</u> - ≡ ≡ Ξ		······
Gereed		-	

Wet network density by soil

$d(k,N,h)=250\sqrt{(2N/kh) km/km^2}$

	Peat	Clay	Sand
Percolation k [m/24h]	6	23	280
Precipitation N [m/24h]	0.007	0.007	0.008
Waterlevel between ditches h [m]	0.4	0.4	0.4
Network density d [km/km ²]	20	10	3

Two networks

Names of networks

NETWORK BLUE LEGEND		UE LEGEND	E	LACK LEGEND	
density	mesh/		NAME	nominal	NAME
	exit interval			width	
km/km ²	km	width 1%		m	
	nominally				
0.002	1000	≥10000	sea		
0.007	300	3000	lake	120	continental highway
0.02	100	1000	stream/pond	100	national highway
0.07	30	300	river/waterway	80	regional highway
0,2	10	100	brook/canal	70	local highway
0.7	3	30	race	60	urban highway
2	1	10	watercourse	40	district road
7	0.3	3	ditch	30	main street
20	0.1	1	small ditch	20	street
70	0.03	0.3	trench	10	path

Nominal hierarchy wet connections

Nominal hierarchy dry connections

The formation of right angles

Length (L) and width (W) of the mesh for a given net density of (D=2)

Superposition of networks

Interference of networks

Crossings

Wet and dry crossings

Rivers, canals and brooks

Superposition races

Interference with highways

Interference highways and railways

The same kind and level

Limitating crossing movements

T-crossings in Zoetermeer

T-crossings in Meerzicht

Crossings of the same kind and different level

Tunnels and slopes

suspension bridge (hangbrug) anchorage block (ankerblok) suspension cable (hangkabel) suspender (hanger) deck (rijvloer) center span (middenoverspanning) tower (toren) side span (zijoverspanning) abutment (landhoofd)

beam bridge (balk- of liggerbrug) abutment (landhoofd) overpass, underpass (bovenkruising, onderdoorgang) deck (brugdek) continuous beam (doorgaande ligger) pier (pijler) parapet (leuning)

arch bridge (boogbrug) approach ramp(aanbrug thrust (horizontale druk) deck (rijvloer) trussed arch with upper and lower chord (vakwerkboog boog met boven- en onderrrand) abutment (landhoofd)

trough arch bridge (boogbrug met laaggelegen rijvloer) multiple span beam bridge (balk- of liggerbrug met meer overspanningen) fan cable stayed bridge (waaiertuibrug) cable stay anchorage (tuiverankering)

based on pressure

or

on tension

deck arch bridge (boogbrug met hooggelegen rijvloer) cantilever bridge (kraagliggerbrug, cantileverbrug)

suspended span (zwevend brugdeel)

cantilever span (uitkragende zijoverspanning)

transporter bridge (zweefbrug) trolley (wagen) platform (platform)

based on pressure

lift bridge (hefbrug) guiding tower (heftoren) lift span (val)

fixed two-hinged three-hinged arch (ingeklemde, tweescharnier~, driescharnierboog) single-leaf bascule bridge (enkele basculebrug)

counterweight (contragewicht

portal bridge (schoorbrug) portal frame (portaal)

pier (pijler)

double-leaf bascule bridge (dubbele basculebrug) oating bridge (pontonbrug) manrope (mantouw)

> pontoon (ponton)

Bailey bridge (baileybrug)

swing bridge (draaibrug)

Crossings of different kind and level

Netwerken			🛛
is calculated Rese	et Save	Ensemble	Neighbourhood (c) Prof.dr.ir.T.M. de Jong
is calculated fill in, double click Rese 02Res.street(100m) Image: Street(100m) Image: Street(100m) 03Nbh.road(300m) Image: Street(100m) Image: Street(100m) 04Dist.road(1km) Image: Street(100m) Image: Street(100m) 04Dist.road(1km) Image: Street(100m) Image: Street(100m) 04Dist.road(1km) Image: Street(100m) Image: Street(100m) 05Urb.highway(30km) Image: Street(100m) Image: Street(100m) 06Loc.highway(100km) Image: Street(100m) Image: Street(100m) 07Reg.highway(300km) Image: Street(100m) Image: Street(100m) 09N at.highway(300km) Image: Street(100m) Image: Street(100m) 11Ditch(100m) Image: Street(100m) Image: Street(100m) 12Ditch(300m) Image: Street(100m) Image: Street(100m) 13Course(1km) Image: Street(100m) Image: Street(100m) 18Dist.park(300m) Image: Street(100m) Image: Street(100m) 12Dist.park(100m) Image: Street(100m) Image: Street(100m) 18Dist.park(100m) Image: Street(110m) Image: Street(110m) 211stand(110m) Image: Street(110m) Image: Street(110m) <th>Save vert hor. v1> 100,0 × 60,00 v1> 3,00 × 5,00 v1> 3,00 5,00 v1> 3,00 3,00 v1> 3,00 5,00 v1> 3,00 3,00 v1> 3,00 3,00</th> <th>Ensemble dens. width 26,67 19,00 1,78 40,00 0,50 60,00 0,17 70,00 0,06 80,00 0,01 120,00 0,50 30,00 0,01 100,00 0,50 30,00 0,50 30,00 0,50 300,00 0,17 100,00 0,17 100,00 0,06 300,00</th> <th></th>	Save vert hor. v1> 100,0 × 60,00 v1> 3,00 × 5,00 v1> 3,00 5,00 v1> 3,00 3,00 v1> 3,00 5,00 v1> 3,00 3,00 v1> 3,00 3,00	Ensemble dens. width 26,67 19,00 1,78 40,00 0,50 60,00 0,17 70,00 0,06 80,00 0,01 120,00 0,50 30,00 0,01 100,00 0,50 30,00 0,50 30,00 0,50 300,00 0,17 100,00 0,17 100,00 0,06 300,00	
24Fown(Skm) 25Conub (10km) 25Region(30km) 27Subnational(100km) 28National(300km) 29International(1000km) 30Global(10.000km)			0,400 km Scale 1: 10000

Measures in traffic

Design measures are deduced from the dispersion of actual measures. Normally the 5% largest measures are left aside for design (95 percentile).

Dispersion of real car widths in 2004; 95 percentile is 1.80m Dispersion of the width of parking places in 1980; 95 percentile is 2.50m

A sidewalk tile as measure of reference

Primary profile spaces needed

2.5 + 2 + 2.5 + 6 + 2.5 + 2 + 2.5 = 20m

Road hierarchy

Profiles

A road hierarchy

Nominal values		fill in number	in number green: parameters to be improved or changed							
(variable between neighbour values)		8	1	2	3	4	5	6	7	8
		of road hierachy >	residential path	residential street	neighbourhood road	district road	urban highway	highway	regional highway	metropolitan highway
	me									
Du	tch direkt bediend gebied	metropolitaine regio	erf	ensemble	buurt	wijk	stad	agglomeratie	regio	metropolitaine regio
Eng	ish directly served area	metropolitan region	estate	ensemble	neighbourhood	district	town	conurbation	region	metropolitan region
m radius mesh turn distance		30000	30	100	300	1000	3000	10000	30000	30000
	directly served inhabitants	1000000	10	100	1000	10000	100000	1000000	2000000	1000000
	number of dwelling layers	10	1	2	3	4	6	7	8	10

The urban area around Dordrecht

Papendrecht detail

A central Dordrecht detail

Dordrecht some 350 years ago

Managing surface

_ 🗆 🔀

_ 🛛 🗙

_ 🗆 🔀

fill in, dubbleclick	Save		(Neighbourhood)		Ensemble (c) Prof.dr.ir.T.M. de Jong			
is calculated	left	above	riaht	below				
01 Plot surface (m2)	100,00	90,00	100,00	110,00				
02 G.floor surface (m2)	50,00	50,00	50,00	50,00				
03 Number of storeys	2,00	2,00	2,00	2,00				
04 Roof height (m)	3,00	3,00	3,00	3,00				
05 House width(m)	5,00	5,00	5,00	5,00				
06 Number of plots/block	9,00	8,00	9,00	8,00				
07 Width garden aside(m)	0,00	0,50	0.00	0.50	┦╞╎╡ ╵╎╎╎╎╎ ╸┝╲╡			
08 Length block + gard.(m)	45,00	41,00	45,00	41,00				
09 House depth(m)	10,00	10,00	10,00	10,00				
10 House volume (m3)	345,00	345.00	345,00	345.00				
11 Floor space (m2)	120,00	120,00	120,00	120,00				
12 Plot length(m)	20,00	17,56	20,00	21,46				
13 Tot. length garden (m)	10,00	7,56	10,00	11,46				
14 Rear garden(m)	9,00	7,56	9,00	11,46				
15 Front garden(m)	1,00	0,00	1,00	0,00				
16 Width ped.pavement (m)	2,00	1,49	2,00	1,49				
17 Width green verge(m2)	2,00	0,00	2,00	0,00				
18 Width parking space (m)	2,50	2,50	2,50	2,50				
19 Width street (m)	6,00	6,00	6,00	6,00				
20 Path round the back (m)	1,00	1,00	1,00	1,00				
21 Plot depth (m)	30,00	25,05	30,00	28,95	┢┲┬╼ <mark>╷╺══╴╷╺┍╤╸</mark> ┍╸╷╡╵			
22 Total surface (ha)	0,14	0,15	0,14	0,17				
23 Density(houses/ha)	65,22	53,22	65,22	46,05				
24 Common green fields(m2)	98,01	87,20	98,01	102,81				
25 Paved area(m2)	345,00	1115,2	345,00	1173,7				
26 C.green per house(m2)	10,89	10,90	10,89	12,85				
27 Paved per house (m2)	38,33	139,41	38,33	146,72				
28 Floor density(m2/m2)	0,78	0,64	0,78	0,55				
29 Number of houses	9,00	8,00	9,00	8,00	► <u>∧</u> -·-· } ·-·-·-·-·-·-·-·-·			
30 N. of parking spaces	16,00	8,00	16,00	8,00				
Number of houses 34 Density 56,66 houses/ha. FSI 0,68 Surface: 100,00m x 60,00 m = 0,60 ha. Scale1 : 1000								
PER HOUSE 1,41 parking spaces; 100,00 m2 for sale; 11,35 m2 green; 87,62 m2 paved area; i.e. resp. 50; 6 and 44 %.								

🛄 Netwerken 📃 🗖 🔀											
is calculated fill in double click Reset	Save Ense	nsemble Neighbourhood (c) Prof.dr.ir.T.M. de Jon	Neighbourhood (c) Prof.dr.ir.T.M. de Jong								
is calculated fill in, double clickReset02Res.street(100m) $\checkmark < \lor \land >$ 03Nbh.road(300m) $\checkmark < \lor \land >$ 04Dist.road(1km) $\checkmark < \lor \land >$ 05Urb.highway(3km) $< \lor \land >$ 06Loc.highway(10km) $< \lor \land >$ 07Reg.highway(30km) $< \lor \land >$ 08Met.higway(300km) $< \lor \land >$ 09N at.highway(300km) $< \lor \land >$ 101011Ditch(100m) $\checkmark < \lor \land >$ 13Course(1km) $\checkmark < \lor \land >$ 14Race(3km) $< \lor \land >$ 15Brook canal(10km) $< \lor \land >$	Save Ense vert. hor. dens. 100.0 × 60.00 26.67 3.00 × 5.00 6.67 3.00 × 5.00 1.78 3.00 5.00 0.50 3.00 3.00 0.017 3.00 3.00 0.02 3.00 3.00 0.01 3.00 3.00 0.01 3.00 3.00 0.01 3.00 5.00 6.67 3.00 5.00 0.50 3.00 5.00 0.01 3.00 5.00 1.78 3.00 3.00 0.01	Neighbourhood (c) Prof.dr.ir. T.M. de Jon width 19,00 40,00 60,00 60,00 70,00 80,00 120,00 100,00 100,00 100,00 100,00 100,00 100,00	'g								
16River canal(30km) 17Nbh.park(100m) 18Dist.park(300m) 19Town park(1km) 20Town landsc.(3km) 211sland(100m) 22Nbh.(300m) 23Distnot(100m) 23Distnot(1km) 24Town(3km) 25Corumb.(100m) 26Hogion(300m) 27Subnational(100km) 28National(300km)	3,00 3,00 0,17 3,00 3,00 0,06										
30Global(10 000km)		0,400 km									
		Scale 1 :	10000								

Saving pavement ensemble

public pavement

Saving pavement neighbourhood

Saving pavement district

District grids

20, 30, 40, 50m

Cerda (1867) and Buchanon (1963)

The same neigbourhood size

vehicles per head

62 The Theoretical Basis

flow. But if a wider view is taken the actual contribution to relieving the centre is extremely uncertain.

It is not inferred here that a ring road is in no circumstances likely to form part of an urban network. The objection is against the slavish adoption of the ring as a standardized pattern. If the problem is considered in terms of a network serving environmental areas (a corridor serving rooms, to use the analogy with buildings) it will be seen at once that the pattern of the network must depend on the disposition of the areas, the kinds and quantities of traffic they generate, the associations that exist between one area and another, or between areas and the outside world. The pattern may eventually comprise a ring, but it must be allowed to work itself out. In designing the network it is unnecessary, and indeed inadvisable, to start with any preconceived intuitive ideas for relief roads, internal by-passes, spine roads, and the like. All these notions confuse the essential technical issue, which is simply the distribution of traffic to areas of buildings,

The only circumstances in which a distributory network might take on a regular geometrical form would be in the case of an extensive area with a uniform spread of development. In such a case the network would be superimposed like a 'grid' with a definite pattern and 'module'. A hexagonal pattern (Figure 12) is very efficient. with economical three-way intersections, but other polygonal patterns are possible. A rectangular pattern requires very complex intersections. The basic dimension or 'module' of the distributory system

12. The hexagonal network pattern which gives a good distribution with comparatively simple intersections.

in such circumstances will broadly depend upon the kinds and intensities of land uses within the enclosed areas: the more intense the activities the more traffic will be generated, and so the greater the need to insert distributors and thus the closer the mesh of the distributory system will need to be. Unfortunately the more intense the activities are the more intense the development is, and the more difficult it becomes to insert a proper distributory system.

The function of the distributory network is to canalize the longer movements from locality to locality. The links of the network should therefore be designed for swift, efficient movement. This means that they cannot also be used for giving direct access to buildings, or even to minor roads serving the buildings, because the consequent frequent junctions would be dangerous and make the road inefficient. It is therefore necessary to introduce the idea of a 'hierarchy' of distributors, whereby important distributors feed down

A hexagonal pattern (Figure 12) is very efficient, with economical three-way intersections, but other polygonal patterns are possible. A rectangular pattern requires very complex intersections.

- - -

The function of the distributory network is to canalize the longer movements from locality to locality.

This means that they cannot also be used for giving direct access to buildings, or even to minor roads serving the buildings, because the consequent frequent junctions would be dangerous and make the road inefficient.

It is therefore necessary to introduce the idea of a 'hierarchy' of distributors, whereby important distributors feed down through distributors of lesser category to the minor roads which give access to the buildings [13].

The system may be likened to the trunk, limbs, branches, and finally the twigs (corresponding to the access roads) of a tree. Basically, however, there are only two kinds of road - *distributors* designed for movement, and *access roads* to serve the buildings.

Grid flexibility (Bach)

Grid flexibility (Bach)

- Stroomweg 70 km/u met vrijliggend locaal verkeer ook op kruisingen
- Gebiedsontsluitingsweg (GOW) 50km/u, met vrijliggend langzaam verkeer langs de weg
- Erftoegangsweg, 30km/u zone

Verbijfsgebied

Dutch appointments 'Duurzaam Veilig'

Regional networks

Network types

1km 3km

10km

300m-10km

Care for pedestrians is the core of urban design
Pedestrians

Reichow: car first

Runcorn: Pedestrian first

Pedestrians in residential area

Radials for pedestrians and cyclists

Railway stations

Bus stations

Bus routes

Bach's bus stop

Bus stops

