Drinking Water 1

Sedimentation

Dr.ir. Jasper Verberk

Room 2.98

Saturday, 06 October 2007

Delft University of Technology

Contents

- 1. Introduction
- 2. Theory of sedimentation (discrete and flocculent settling)
- 3. Construction alternatives
- 4. Inlet and outlet constructions
- 5. Sludge removal
- 6. Summary

Introduction

Natural settling

Settling after coagulation & flocculation

Theory of settling

Settling velocity of discrete particles

$$A = \frac{\pi}{4} \cdot d^{2}; \quad V = \frac{\pi}{6} \cdot d^{3} \implies V_{s} = \sqrt{\frac{4}{3 \cdot c_{D}}} \cdot \frac{\rho_{s} - \rho_{w}}{\rho_{w}} \cdot g \cdot d$$

∕y ľ∪Delft

Drag coefficient

Laminar settling

Re < 1
$$c_D = \frac{24}{Re}$$
 $v_s = \frac{1}{18} \cdot \frac{g}{v} \cdot \frac{\rho_s - \rho_w}{\rho_w} \cdot d^2$ Stokes equation

Example $\rho_s = 2,650 \text{ kg/m}^3, \rho_w = 1,000 \text{ kg/m}^3, d = 1.10^{-4} \text{ m}$ $T = 10 \,^\circ\text{C} \rightarrow v = 1.31 \cdot 10^{-6} \text{ m}^2/\text{s}$ Calculate the settling velocity of this particle $\mathbf{s} = \frac{1}{18} \cdot \frac{9.81}{1.31 \cdot 10^{-6}} \cdot \left(\frac{2650 - 1000}{1000}\right) \cdot \left(1.10^{-3}\right)^2$ = 0.0069 m/s = 24.8 m/hcheck Re: $\text{Re} = \frac{V_s \cdot d}{v} = \frac{0.0069 \cdot 1 \cdot 10^{-4}}{1.31 \cdot 10^{-6}} = 0.53 < 1$

TUDelft

Settling velocities

″uDelft

Horizontal sedimentation

Horizontal sedimentation

Settling only depends on the surface loading v_{s0} , depth H has no influence

Quiescent settling test

Discrete settling

h = 0.5 m							
t [sec]	0	900	1800	2700	3600	5400	7200
C [ppm]	86	57	25	8	3	1	0
C/C ₀ [%]	100	66	29	9	4	1	0
Ŭ							
h = 1.25	m						
t [sec]	0	900	1800	2700	3600	5400	7200
C [ppm]	86	83	63	49	37	16	6
C/C ₀ [%]	100	96	73	57	42	19	7

Discrete settling

″uDelft

Cumulative frequency distribution settling velocity

Efficiency sedimentation

v_s>=v_{s0} settles completely

 $r = 1 - p_0$

Vertical sedimentation

 $v_s > = v_{s0}$ settles completely $v_s < v_{s0}$ does not settle

 $r = 1 - p_0$

$$v_{0} = \frac{Q}{B \cdot L} = v_{s0}$$

Efficiency horizontal sedimentation

 $v_s >= v_{s0}$ settles completely

 $v_s \le v_{s0}$ settles partially, depends on h/H

$$r = (1 - p_0) + \frac{1}{v_{s0}} \int_{0}^{p_0} v_s dp$$

fUDelft

Efficiency horizontal sedimentation

Removal efficiency horizontal sedimentation

Example horizontal sedimentation

Calculate the efficiency of a sedimentation tank as function of the surface. The flow through the sedimentation tank is $0.5 \text{ m}^3/\text{s}$

A [m ²] s ₀ [m/h]	p [%]
500 3.60	47
1000 1.80	74
1500 1.19	89
2000 0.90	94
2500 0.72	97
3000 0.61	98

Reduction in efficiency

- Turbulence
- Stability
- Scouring

- \rightarrow \rightarrow \rightarrow
- Reynolds number Camp or Froude number Scouring velocity

Influence of turbulence

$$v_0 = \frac{Q}{B \cdot H}$$

Ro -	$v_0 \cdot R$
Ke –	ν

$$R = \frac{B \cdot H}{B + 2 \cdot H}$$

Re > 2,000 Re < 2,000 turbulent flow laminar flow

$$\operatorname{Re} = \frac{Q}{v} \cdot \frac{1}{B + 2 \cdot H}$$

Short, wide and deep basin

Theory turbulence

 $r = v_s / v_{s0} = 0.8$ $=> v_{s}/v_{0} > 0.5$ $\frac{L}{H} = \frac{v_0}{v_{s0}} = \frac{v_s/v_{s0}}{v_s/v_0} = \frac{0.8}{0.5} = 1.6$ Short, wide and deep basin L/H = 20, $v_s/v_{s0} = 0.8$ $=> \frac{V_s}{V_0} = \frac{0.8}{20} = 0.04$ r = 0.73

Short circuit flow

Short circuit flow

$$C_{p} = \frac{V_{0}^{2}}{g \cdot R} \qquad P_{0} = \frac{Q}{B \cdot H}$$
$$R = \frac{B \cdot H}{B + 2 \cdot H}$$

$$C_{p} = \frac{Q^{2}}{g} \cdot \frac{B + 2 \cdot H}{B^{3} \cdot H^{3}}$$

 $C_p > 1.10^{-5}$ $C_p < 1.10^{-5}$

stable non stable Н

Long, narrow and shallow

Short circuit flow

Shear stress

Design settling zone

 \rightarrow

 \rightarrow

 \rightarrow

- Turbulence
- Stability
- Scouring

Reynolds number < 2,000</th>Camp or Froude number > $1\cdot10^{-5}$ Scouring velocity $v_0 < v_{sc}$

Short, wide and deep basin Long, narrow and shallow

Practical solution \rightarrow L/H = 6 - 10

Flocculent settling

Flocculent settling

	h =			
<u>t</u>	0.75 m	1.50 m	2.25 m	<u>3.0 m</u>
0	100	100	100	100
600	93	96	98	99
1200	81	86	88.5	89.5
1800	70.5	77.5	81	83
2700	28	38	46.5	53
3600	13.5	22	31	40
5400	3	8	13.5	20
7200	1.5	3	6	9.5

Cumulative frequency distribution flocculent settling

Flocculent settling

Construction alternatives

Sedimentation tanks WRK I-II

Sedimentation tanks WRK I-II

Tray settling tanks

Tray settling tanks

— sedimentation zone, surface A ——

TUDelft

Counter current tilted plate separator

$$v_{s0}' = v_{s0} \cdot \frac{w + t}{H \cdot \cos \alpha + w}$$

Co-current tilted plate separator

$$v_{s0}' = v_{s0} \cdot \frac{w + t}{H \cdot \cos \alpha - w}$$

 \Rightarrow V_{s0} \gg $\frac{V_{s0}}{20}$

α	counter current:	55 - 60°
	co-current:	30 - 40°
H:	1 - 3 m	
W:	3.5 - 8 cm	
t:	5 mm	

Details tilted plate separators

Details tilted plate separator

Circular sedimentation tanks

Circular sedimentation tanks

Circular sedimentation tanks

Sludge blanket installation

Special constructions

Sludge blanket installation Berenplaat

TUDelft

Sludge blanket installation Bombay

Sludge blanket installation Bombay

Inlet and outlet constructions

Inlet constructions

Diffusor wall

Diffusor wall

Inlet constructions

Outlet constructions

Outlet constructions

Sludge removal

Sludge zone and sludge removal

Sludge removal device

Summary

- discrete settling
 - vertical sedimentation
 - horizontal sedimentation
- influence turbulence
- influence stability
- influence shear stress
- flocculent settling

 $s = f(\rho, d, v)$ $r = 1 - p_0$ $r = (1 - p_0) + \frac{1}{v_{s0}} \int_{0}^{p_0} v_s dp$ $Re = \frac{v_0 \cdot R}{v_s}$ $C_p = \frac{v_0^2}{g \cdot R}$ $v_s = f(\rho, d)$

influence t (detention time)

Summary

Delft