ET8.017 El. Instr.

Electronic Instrumentation

Lecturer: Kofi Makinwa

K.A.A.Makinwa@TUDelft.NL

015-27 86466 Room. HB13.270 EWI building

Also involved: Saleh Heidary (S.H.Shalmany@TUDelft.NL)

TU	Delft	Outline	ET8.017
Delft Unive	sity of Technology		El. Instr.
	Monday Sept. 24:	Deterministic and Random Errors Common-mode Rejection Ratio Power supply Rejection Ratio Gain error	

TUDelft Delft University of Technology	Shot noise	ET8.017 El. Instr.
 Shot m result This can current lumps in gen At bec Like th and so If a cu independent by in = This e not to correlat condution 	oise is the result of the fact that an electrical of the motion of discrete charge carriers. An be compared with hail on a roof: even if the t (mass flow) is constant, the amount of char of measured in different intervals with the sate ral, be different. The relative fluctuation be observed and smaller. The relative fluctuation be observed as a smaller and smaller. The relative fluctuation frequencies are also a form of white noise. The rent I consists of charge carriers with charge andently of each other, then the spectral noise $\sqrt{(2qI)}$ (A/Hz ^{1/2}). Quation applies to p-n junctions (diodes, transmetallic conductors where there is more lon ation between the movement of the charge of ctors, the shot noise will thus be smaller!	Il current is the the average irge carrriers (ice ime length ∆t, will, comes greater as iency spectrum ge q that move se current is given insistors, etc.) but ing-range carriers. In such

TUDelft Delft University of Technology	Signal-to-noise ratio (SNR)	ET8.017 El. Instr.
SNR is define expressed i	ned as the ratio between signal power and nois n dB:	e power
$\frac{S}{N} = 101c$	$\log\left(\frac{P_{\rm s}}{P_{\rm N}}\right) = 10 \log\left(\frac{V_{\rm s}(\rm rms)}{V_{\rm N}(\rm rms)}\right)^2 = 20 \log\left(\frac{1}{2}\right)^2$	$\left(\frac{V_{\rm s}(\rm rms)}{V_{\rm N}(\rm rms)}\right)$
Notes: • Since the significant but from r • A given S • For maxin be about t	form of the signal and that of the noise may diff tly, SNR should not be calculated from signal ar ms values. NR is always associated with a certain bandwic num SNR, the bandwidth of a measurement sys the same as the expected signal bandwidth	[:] er mplitudes Ith. stem should

