System Validation

Mohammad Mousavi
2. Strong bahavioral equivalences and weak behavioral equivalences part 2.

Weak Behavioral Equivalences

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013
 TU Delft

Overview

- Motivation
- Labelled Transition Systems,
- Strong equivalences:
$\sqrt{ }$ trace equivalence,
$\sqrt{ }$ language (completed trace) equivalence,
$\sqrt{ }$ strong bisimilarity,
\rightarrow exercises.
\rightarrow Weak equivalences:
- weak trace equivalence,
- branching bisimilarity,
- root condition.
- exercises

Motivating Example

Verifying a Two Place Buffer

Recap

Strong Equivalences

- Traces: sequences of actions originating from the initial state,

Recap

Strong Equivalences

- Traces: sequences of actions originating from the initial state,
- Language: sequences of actions originating from the initial state and ending in either termination or deadlock,

Recap

Strong Equivalences

- Traces: sequences of actions originating from the initial state,
- Language: sequences of actions originating from the initial state and ending in either termination or deadlock,
- Bisimulation relation: related states can mimic each others' transitions such that the targets are related by the same relation

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world.

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world.
- τ : The collective name for all invisible actions.

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world.
- τ : The collective name for all invisible actions.
- Adapt behavioral equivalence to neglect τ

Labeled Transition Systems

An LTS is a 5-tuple $\langle S, A c t, \rightarrow, s, T\rangle$:

- S is a set of states,
- Act is a set of (multi-)actions (assumption: $\tau \in A c t$)
- $\rightarrow \subseteq S \times$ Act $\times S$ is the transition relation.
- $s \in S$ is the initial state,
- $T \subseteq S$ is the set of terminating states,

Trace equivalence

Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $\forall_{t_{0}^{\prime} \in S,}, a \in$ Act $\quad, \sigma \in$ Act ${ }^{*} a \sigma \in \quad \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Trace Equivalence

For states t, t^{\prime}, t is trace equivalent to t^{\prime} iff
$\operatorname{Traces}(t)=\operatorname{Traces}\left(t^{\prime}\right)$.

Weak Trace equivalence

Weak Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $\forall_{t_{0}^{\prime} \in S, a \in A c t \backslash\{\tau\}, \sigma \in A c t V_{V}} a \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
4. $\forall_{t_{0}^{\prime} \in S, \sigma \in A c t \sqrt{V}^{*}} \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.

Trace Equivalence

For states t, t^{\prime}, t is trace equivalent to t^{\prime} iff
$\operatorname{Traces}(t)=\operatorname{Traces}\left(t^{\prime}\right)$.

Weak Trace equivalence

Weak Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in W \operatorname{Traces}(t)$,
2. $\sqrt{ } \in W \operatorname{Traces}(t)$ when $t \in T$,
3. $\forall_{t_{0}^{\prime} \in S, a \in A c t \backslash\{\tau\}, \sigma \in A c t \mathbb{V}^{*}} a \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.
4. $\forall_{t_{0}^{\prime} \in S, \sigma \in A c t \sqrt{V}^{*}} \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in W \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Trace Equivalence
For states t, t^{\prime}, t is trace equivalent to t^{\prime} iff
$W \operatorname{Traces}(t)=W \operatorname{Traces}\left(t^{\prime}\right)$.

1. $\epsilon \in \operatorname{Traces}(t)$,

2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

- $\mathrm{W} \operatorname{Tr}\left(s_{2}\right)=\mathrm{W} \operatorname{Tr}\left(s_{3}\right)=\mathrm{W} \operatorname{Tr}\left(t_{4}\right)=\mathrm{W} \operatorname{Tr}\left(t_{5}\right)=$ $\{\epsilon, \sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

- $\mathrm{W} \operatorname{Tr}\left(s_{2}\right)=\mathrm{W} \operatorname{Tr}\left(s_{3}\right)=\mathrm{W} \operatorname{Tr}\left(t_{4}\right)=\mathrm{W} \operatorname{Tr}\left(t_{5}\right)=$ $\{\epsilon, \sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

- $\mathrm{W} \operatorname{Tr}\left(s_{2}\right)=\mathrm{W} \operatorname{Tr}\left(s_{3}\right)=\mathrm{W} \operatorname{Tr}\left(t_{4}\right)=\mathrm{W} \operatorname{Tr}\left(t_{5}\right)=$ $\{\epsilon, \sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\operatorname{WTr}\left(t_{2}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}$, $\mathrm{W} \operatorname{Tr}\left(t_{3}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

- $\mathrm{W} \operatorname{Tr}\left(s_{2}\right)=\mathrm{W} \operatorname{Tr}\left(s_{3}\right)=\mathrm{W} \operatorname{Tr}\left(t_{4}\right)=\mathrm{W} \operatorname{Tr}\left(t_{5}\right)=$ $\{\epsilon, \sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(t_{2}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}$, $\mathrm{W} \operatorname{Tr}\left(t_{3}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(t_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$,
4. $\sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{\tau} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Weak Traces: An Example

- $\mathrm{W} \operatorname{Tr}\left(s_{2}\right)=\mathrm{W} \operatorname{Tr}\left(s_{3}\right)=\mathrm{W} \operatorname{Tr}\left(t_{4}\right)=\mathrm{W} \operatorname{Tr}\left(t_{5}\right)=$ $\{\epsilon, \sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\operatorname{WTr}\left(t_{2}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}$, $\mathrm{W} \operatorname{Tr}\left(t_{3}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(t_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\mathrm{W} \operatorname{Tr}\left(s_{0}\right)=\mathrm{W} \operatorname{Tr}\left(t_{0}\right)=$
$\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ } /\}$.

Weak Trace Equivalence: An Observation

Observation
$\mathrm{W} \operatorname{Tr}\left(s_{0}\right)=\mathrm{W} \operatorname{Tr}\left(t_{0}\right)=$
$\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ }\}$

Moral of the Story
Weak Trace equivalence is usually too coarse for interacting (open) systems (neglects important differences).

Weak Bisimulations

Idea

1. An a-transition should be mimicked by the same transition possibly with before and/or after (stuttering) τ-transitions;
2. A τ-transition can be mimicked by remaining in the same state (making no transition).

(Weak, Branching) Bisimulation

Formal Definition:

- $R \subseteq S \times S$ is a all $\forall\left(t_{0}, t_{1}\right) \in R$
- $\forall_{t_{0}^{\prime} \in S, a \in A} t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow$
- $t_{0} \in T \Rightarrow t_{1} \in T$
and vice versa.

$$
\begin{aligned}
- & \exists \underset{\rightarrow}{t_{2}^{\prime} \in S t_{1}} \quad \xrightarrow{a} t_{2}^{\prime} \\
& \wedge\left(t_{0}^{\prime}, t_{2}^{\prime}\right) \in R
\end{aligned}
$$

Bisimulation

bisimulation relation when for
,

(Weak, Branching) Bisimulation

Formal Definition: Weak

- $R \subseteq S \times S$ is a weak all $\forall\left(t_{0}, t_{1}\right) \in R$
- $\forall_{t_{0}^{\prime} \in S, a \in A} t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow$
- $a=\tau \wedge\left(t_{0}^{\prime}, t_{1}\right) \in R$ or
- $\exists_{t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime} \in s} t_{1} \xrightarrow{\tau}{ }^{*} t_{1}^{\prime} \xrightarrow{a} t_{2}^{\prime} \xrightarrow{\tau}{ }^{*} t_{3}^{\prime}$

$$
\wedge\left(t_{0}^{\prime}, t_{3}^{\prime}\right) \in R
$$

- $t_{0} \in T \Rightarrow \quad \exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{\tau}{ }^{*} t_{1}^{\prime}$
bisimulation relation when for

Bisimulation

(Weak, Branching) Bisimulation

Formal Definition:

Branching Bisimulation

- $R \subseteq S \times S$ is a
branching bisimulation relation when for all $\forall_{\left(t_{0}, t_{1}\right) \in R}$
- $\forall_{t_{0}^{\prime} \in S, a \in A} t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow$
- $a=\tau \wedge\left(t_{0}^{\prime}, t_{1}\right) \in R$ or
- $\exists_{t_{1}^{\prime}, t_{2}^{\prime}} \in s t_{1} \xrightarrow{\tau}{ }^{*} t_{1}^{\prime} \xrightarrow{a} t_{2}^{\prime}$
$\wedge\left(t_{0}^{\prime}, t_{2}^{\prime}\right) \in R \quad \wedge\left(t_{0}, t_{1}^{\prime}\right) \in R$,
- $t_{0} \in T \Rightarrow$

$$
\exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{\tau} t_{1}^{\prime} \wedge\left(t_{0}, t_{1}^{\prime}\right) \in R \wedge t_{1}^{\prime} \in T,
$$

and vice versa.

Weak vs. Branching Bisimulation

Weak Bisimulation

Weak vs. Branching Bisimulation

Weak Bisimulation

Branching Bisimulation

Weak Vending Machines

$\overleftrightarrow{\leftrightarrow}_{w}$?

Weak Vending Machines

Weak Vending Machines

Observation
Weak Bisimulation can be too coarse. It does not preserve the branching structure.

Weak Vending Machines

$$
\leftrightarrow_{b} ?
$$

Weak Vending Machines

Weak Bisimulations and Choice

Weak Bisimulation Equivalence

Conclusions
Weak bisimulation

1. does not preserve branching structure (solution: branching bisimulation);
2. is not preserved under choice (solution: rootedness).

Root Condition

Basic Idea
For a weak bisimulation to be a congruence with respect to choice, the first τ-transition should be mimicked by a τ transition.

Formal Definition: Rootedness
Two state s_{0}, s_{1} are rooted branching (weak) bisimilar if

- there exists a branching (weak) bisimulation relation R such that $\left(s_{0}, s_{1}\right) \in R$ and
- s_{0} and s_{1} are only related to each other (and not to any other state).

Weak Bisimulations and Choice

Weak Bisimulations and Choice

Van Glabbeek's Spectrum (The Treated Part)

Van Glabbeek's Spectrum

Remaining Exercises

－2．4．6
－2．4．7

