System Validation

Mohammad Mousavi

2. Strong bahavioral equivalences and weak behavioral equivalences part 2.

Weak Behavioral Equivalences

Mohammad Mousavi

 $\mathsf{TU}/\mathsf{Eindhoven}$

System Validation, 2012-2013 TU Delft

Mousavi: Weak Behavioral Equivalences

Overview

- Motivation
- Labelled Transition Systems,
- Strong equivalences:
 - $\sqrt{}$ trace equivalence,
 - $\sqrt{}$ language (completed trace) equivalence,
 - √ strong bisimilarity,
 - \rightarrow exercises.
- \rightarrow Weak equivalences:
 - weak trace equivalence,
 - branching bisimilarity,
 - root condition.
 - exercises

《曰》 《圖》 《臣》 《臣》

Motivating Example

Verifying a Two Place Buffer

Recap

Strong Equivalences

Traces: sequences of actions originating from the initial state,

< ロ > < 回 > < 回 > < 回 > < 回 >

Recap

Strong Equivalences

- Traces: sequences of actions originating from the initial state,
- Language: sequences of actions originating from the initial state and ending in either termination or deadlock,

イロト イポト イヨト イヨト

Recap

Strong Equivalences

- Traces: sequences of actions originating from the initial state,
- Language: sequences of actions originating from the initial state and ending in either termination or deadlock,
- Bisimulation relation: related states can mimic each others' transitions such that the targets are related by the same relation

イロト イポト イヨト イヨト

Weak Equivalences

Idea

Internal actions should be invisible to the outside world.

Mousavi: Weak Behavioral Equivalences

イロン イヨン イヨン イヨン

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world.
- τ : The collective name for all invisible actions.

イロン イヨン イヨン イヨン

Weak Equivalences

Idea

- Internal actions should be invisible to the outside world.
- τ : The collective name for all invisible actions.
- Adapt behavioral equivalence to neglect au

イロト イヨト イヨト イヨト

Labeled Transition Systems

An LTS is a 5-tuple $\langle S, Act, \rightarrow, s, T \rangle$:

- S is a set of states,
- Act is a set of (multi-)actions (assumption: $\tau \in Act$)
- $\blacktriangleright \rightarrow \subseteq S \times Act \times S$ is the *transition relation*.
- s ∈ S is the initial state,
- $T \subseteq S$ is the set of *terminating* states,

イロト イヨト イヨト イヨト

Trace equivalence

Traces of a State For state $t \in S$, Traces(t) is the minimal set satisfying: 1. $\epsilon \in \text{Traces}(t)$, 2. $\sqrt{\epsilon} \text{Traces}(t)$ when $t \in T$, 3. $\forall_{t'_0 \in S, a \in Act}, \sigma \in Act_{\sqrt{*}} a\sigma \in \text{Traces}(t)$ when $\exists_{t' \in S} t \xrightarrow{a} t'$ and $\sigma \in \text{Traces}(t')$.

Trace Equivalence

For states t, t', t is trace equivalent to t' iff Traces(t) = Traces(t').

• • = • • = •

Weak Trace equivalence

Weak Traces of a State

For state $t \in S$, Traces(t) is the minimal set satisfying:

1. $\epsilon \in W$ Traces(t),

2.
$$\sqrt{\in W}$$
Traces (t) when $t \in T$,

- 3. $\forall_{t'_0 \in S, a \in Act \setminus \{\tau\}, \sigma \in Act_{\sqrt{*}}} a\sigma \in W \operatorname{Traces}(t) \text{ when } \exists_{t' \in S} t \xrightarrow{a} t'$ and $\sigma \in W \operatorname{Traces}(t')$.
- 4. $\forall_{t'_0 \in S, \sigma \in Act_{\sqrt{*}}} \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t' \in S} t \xrightarrow{\tau} t'$ and $\sigma \in W \operatorname{Traces}(t')$.

Trace Equivalence

For states t, t', t is trace equivalent to t' iff Traces(t) = Traces(t').

イロト イポト イヨト イヨト

Weak Trace equivalence

Weak Traces of a State

For state $t \in S$, Traces(t) is the minimal set satisfying:

1. $\epsilon \in W$ Traces(t),

2.
$$\sqrt{\in W}$$
Traces (t) when $t \in T$,

- 3. $\forall_{t'_0 \in S, a \in Act \setminus \{\tau\}, \sigma \in Act_{\sqrt{*}}} a\sigma \in W \operatorname{Traces}(t) \text{ when } \exists_{t' \in S} t \xrightarrow{a} t'$ and $\sigma \in W \operatorname{Traces}(t')$.
- 4. $\forall_{t'_0 \in S, \sigma \in Act_{\sqrt{*}}} \sigma \in W \operatorname{Traces}(t)$ when $\exists_{t' \in S} t \xrightarrow{\tau} t'$ and $\sigma \in W \operatorname{Traces}(t')$.

Weak Trace Equivalence

For states t, t', t is trace equivalent to t' iff WTraces(t) = WTraces(t').

イロト イポト イヨト イヨト

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \text{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$,
- 4. $\sigma \in \text{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$.

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \text{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$,
- 4. $\sigma \in \text{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$.

$$\mathsf{WTr}(s_2) = \mathsf{WTr}(s_3) = \mathsf{WTr}(t_4) = \mathsf{WTr}(t_5) = \{\epsilon, \sqrt{\}},$$

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \text{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$,
- 4. $\sigma \in \operatorname{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \operatorname{Traces}(t')$.

$$WTr(s_2) = WTr(s_3) = WTr(t_4) = WTr(t_5) = \\ \{\epsilon, \sqrt{\}},$$

• WTr(s_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \text{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$,
- 4. $\sigma \in \text{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$.

$$WTr(s_2) = WTr(s_3) = WTr(t_4) = WTr(t_5) = \\ \{\epsilon, \sqrt{\}},$$

- WTr(s_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },
- ► WTr(t_2) = { ϵ , coffee, coffee $\sqrt{}$ }, WTr(t_3) = { ϵ , tea, tea $\sqrt{}$ },

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \operatorname{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \operatorname{Traces}(t')$,
- 4. $\sigma \in \operatorname{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \operatorname{Traces}(t')$.

- $WTr(s_2) = WTr(s_3) = WTr(t_4) = WTr(t_5) = \\ \{\epsilon, \sqrt{\}},$
- WTr(s_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },
- WTr(t_2) = { ϵ , coffee, coffee $\sqrt{}$ }, WTr(t_3) = { ϵ , tea, tea $\sqrt{}$ },
- WTr(t_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },

- 1. $\epsilon \in \operatorname{Traces}(t)$,
- 2. $\sqrt{\in}$ Traces(t) when $t \in T$,
- 3. $a\sigma \in \text{Traces}(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \text{Traces}(t')$,
- 4. $\sigma \in \operatorname{Traces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \operatorname{Traces}(t')$.

- ► WTr(s_2) = WTr(s_3) = WTr(t_4) = WTr(t_5) = $\{\epsilon, \sqrt{\}},$
- WTr(s_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },
- ► WTr(t_2) = { ϵ , coffee, coffee $\sqrt{}$ }, WTr(t_3) = { ϵ , tea, tea $\sqrt{}$ },
- WTr(t_1) = { ϵ , coffee, tea, coffee $\sqrt{}$, tea $\sqrt{}$ },
- $WTr(s_0) = WTr(t_0) =$
 - $\{\epsilon, coin, coin coffee, coin tea, coin coffee \sqrt{, coin tea \sqrt{}}\}$

Weak Trace Equivalence: An Observation

Observation WTr(s_0) = WTr(t_0) = { ϵ , coin, coin coffee, coin tea, coin coffee $\sqrt{}$, coin tea $\sqrt{}$ }

Moral of the Story

Weak Trace equivalence is usually too coarse for interacting (open) systems (neglects important differences).

Weak Bisimulations

Idea

- 1. An *a*-transition should be mimicked by the same transition possibly with before and/or after (stuttering) τ -transitions;
- 2. A τ -transition can be mimicked by remaining in the same state (making no transition).

イロト イヨト イヨト イヨト

(Weak, Branching) Bisimulation

Formal Definition:

►
$$R \subseteq S \times S$$
 is a
all $\forall_{(t_0,t_1) \in R}$

$$\blacktriangleright \forall_{t'_0 \in S, a \in A} t_0 \stackrel{a}{\to} t'_0 \Rightarrow$$

$$\begin{array}{c} \bullet \exists t_2' \in S t_1 \\ \land (t_0', t_2') \in R \end{array} \xrightarrow{a} t_2'$$

•
$$t_0 \in T \Rightarrow t_1 \in T$$

and vice versa.

Bisimulation

bisimulation relation when for

,

,

(Weak, Branching) Bisimulation

Formal Definition: Weak

•
$$R \subseteq S \times S$$
 is a weak
all $\forall_{(t_0,t_1) \in R}$

Bisimulation

bisimulation relation when for

$$\begin{array}{l} \forall_{t_0' \in S, a \in A} t_0 \xrightarrow{a} t_0' \Rightarrow \\ \bullet & a = \tau \land (t_0', t_1) \in R \text{ or} \\ \bullet & \exists_{t_1', t_2', t_3' \in S} t_1 \xrightarrow{\tau} * t_1' \xrightarrow{a} t_2' \xrightarrow{\tau} * t_3' \\ & \land (t_0', t_3') \in R \\ \bullet & t_0 \in T \Rightarrow \qquad \exists_{t_1' \in S} t_1 \xrightarrow{\tau} * t_1' \qquad \land t_1' \in T, \end{array}$$

and vice versa.

(Weak, Branching) Bisimulation

Formal Definition:

Branching Bisimulation

▶ $R \subseteq S \times S$ is a branching bisimulation relation when for all $\forall_{(t_0,t_1)\in R}$

$$\forall t_{0} \in S, a \in A t_{0} \xrightarrow{a} t_{0}' \Rightarrow$$

$$a = \tau \land (t_{0}', t_{1}) \in R \text{ or}$$

$$\exists t_{1}', t_{2}' \in S t_{1} \xrightarrow{\tau} t_{1}' \xrightarrow{a} t_{2}'$$

$$\land (t_{0}', t_{2}') \in R \qquad \land (t_{0}, t_{1}') \in R,$$

$$t_{0} \in T \Rightarrow \qquad \exists t_{1}' \in S t_{1} \xrightarrow{\tau} t_{1}' \land (t_{0}, t_{1}') \in R \land t_{1}' \in T,$$

and vice versa.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

Weak vs. Branching Bisimulation

Weak vs. Branching Bisimulation

Mousavi: Weak Behavioral Equivalences

Observation Weak Bisimulation can be too coarse. It does not preserve the branching structure.

・ロ・・ 日本・ ・ 日本・

イロト イヨト イヨト イヨト

æ

イロト イヨト イヨト イヨト

¥

Weak Bisimulation Equivalence

Conclusions

Weak bisimulation

- does not preserve branching structure (solution: branching bisimulation);
- 2. is not preserved under choice (solution: rootedness).

イロト イヨト イヨト イヨト

Root Condition

Basic Idea

For a weak bisimulation to be a congruence with respect to choice, the first τ -transition should be mimicked by a τ transition.

Formal Definition: Rootedness

Two state s_0, s_1 are rooted branching (weak) bisimilar if

- ▶ there exists a branching (weak) bisimulation relation R such that $(s_0, s_1) \in R$ and
- ▶ s₀ and s₁ are only related to each other (and not to any other state).

・ロト ・回ト ・ヨト ・ヨト

イロン イヨン イヨン イヨン

Mousavi: Weak Behavioral Equivalences

イロン イヨン イヨン イヨン

¥

Mousavi: Weak Behavioral Equivalences

Van Glabbeek's Spectrum (The Treated Part)

Van Glabbeek's Spectrum

Remaining Exercises

▶ 2.4.6

▶ 2.4.7

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへの