System Validation

Mohammad Mousavi
4. Sequential Processes: Theory

Sequential Processes

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013
 TU Delft

Announcements

- There will be a guest lecturer on October 10, 2012.
- There will be no meetings on October 10, 2012.

Overview

- Motivation
- Actions
- Multi-actions
- Alternative and sequential composition
- Deadlock
- Conditional and sum operator

From Processes to Their Algebra

Motivation

- in practice graphical representation is monstrously big

Example

From Processes to Their Algebra

Motivation

- in practice graphical representation is monstrously big
- manipulating and analyzing the graphical representation is virtually impossible

From Processes to Their Algebra

Motivation

- in practice graphical representation is monstrously big
- manipulating and analyzing the graphical representation is virtually impossible

Solution: use a compact textual presentation and algebraic rules for manipulating them.

Outline

Actions

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

Actions

- Atomic building blocks of processes
- May represent: internal activities, sending messages, receiving messages and the result of a synchronization
- May take parameters, typically denoted by a(d) (natural number, boolean, or any other Abstract Data Type)

Actions

- Examples:
- act rcv_coin: Euro;

Actions

- Examples:
- act rcv_coin: Euro;
- act snd_number,rcv_number: Nat; (instance: snd_number (1))

Actions

- Examples:
- act rcv_coin: Euro;
- act snd_number,rcv_number: Nat; (instance: snd_number (1))
- act ack_number: Bool \# Nat;

Actions

- Examples:
- act rcv_coin: Euro;
- act snd_number,rcv_number: Nat; (instance: snd_number(1))
- act ack_number: Bool \# Nat;
- N.B. actions are not functions (or procedures, in the programming languages' sense)

Outline

Actions

Multi－Actions

Alternative and Sequential Composition

Conditional and Sum Operators

Multi-Actions

- A number of actions happening at the same time
- Syntax:

$$
\alpha::=\tau|a| a(\vec{d})|\alpha| \beta,
$$

τ is the internal (invisible) action

- Auxiliary operators:
- Removal of multi-actions $\alpha \backslash \beta$
- Inclusion between multi-action $\alpha \sqsubseteq \beta$
- Stripping data off $\underline{\alpha}$

Multi-Actions

Axioms (Part I: Basic axioms)

MA1 $\alpha|\beta=\beta| \alpha$
MA2 $\quad(\alpha \mid \beta)|\gamma=\alpha|(\beta \mid \gamma)$
MA3 $\alpha \mid \tau=\alpha$

Multi-Actions

Axioms (Part II: Removal of multi-actions $\alpha \backslash \beta$)

MD1 $\tau \backslash \alpha=\tau$
MD2 $\alpha \backslash \tau=\alpha$
MD3 $\alpha \backslash(\beta \mid \gamma)=(\alpha \backslash \beta) \backslash \gamma$
MD4 $\quad(a(d) \mid \alpha) \backslash a(d)=\alpha$
MD5 $\quad(a(d) \mid \alpha) \backslash b(e)=a(d) \mid(\alpha \backslash b(e)) \quad$ if $a \not \equiv b$ or $d \not \approx e$

Multi-Actions

Axioms (Part III: Inclusion between multi-action $\alpha \sqsubseteq \beta$)

MS1 $\tau \sqsubseteq \alpha=$ true
MS2 $a \sqsubseteq \tau=$ false
MS3 $\quad a(d)|\alpha \sqsubseteq a(d)| \beta=\alpha \sqsubseteq \beta$
MS4 $a(d)|\alpha \sqsubseteq b(e)| \beta=a(d) \mid(\alpha \backslash b(e)) \sqsubseteq \beta \quad$ if $a \not \equiv b$ or $d \not \approx e$

Multi-Actions

Axioms (Part IV: Stripping data off $\underline{\alpha}$)

MAN1 $\quad \underline{\tau}=\tau$
MAN2 $\quad a(d)=a$
MAN3 $\quad \underline{\alpha \mid \beta}=\underline{\alpha} \mid \underline{\beta}$

Exercises

$(\alpha \mid \mathbf{a}(\mathbf{d})) \backslash \mathbf{a}(\mathbf{d})=\alpha$

4.2.2.1

4.2.2.3

Outline

Actions

Multi－Actions

Alternative and Sequential Composition

Conditional and Sum Operators
$4 \square>4$ 可 $\quad 4$ 三 $\quad 4$ 三
ミ \quad Q

Alternative composition

- Syntax: $p+q$
- Intuition: the process behaves as either p or q

Alternative composition

- Syntax: $p+q$
- Intuition: the process behaves as either p or q

Axioms

Alternative composition

- Syntax: $p+q$
- Intuition: the process behaves as either p or q

Axioms

$$
\begin{array}{ll}
\text { A1 } & x+y=y+x \\
\text { A2 } & x+(y+z)=(x+y)+z \\
\text { A3 } & x+x=x
\end{array}
$$

Write $x \subseteq y$ for $x+y=y$.

Sequential composition

- Syntax: p•q
- Intuition: the process behaves as p and upon termination of p, as q.

Sequential composition

- Syntax: p•q
- Intuition: the process behaves as p and upon termination of p, as q.

Axioms

$$
\begin{array}{ll}
\text { A4 } & (x+y) \cdot z=x \cdot z+y \cdot z \\
\text { A5 } & (x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{array}
$$

(Delayable) Deadlock

- Syntax: δ
- Intuition: a process that cannot do anything but let the time pass

(Delayable) Deadlock

- Syntax: δ
- Intuition: a process that cannot do anything but let the time pass

Axioms

A6	$\alpha+\delta=\alpha$
A	$\delta \cdot x=\delta$

Exercises

4.3.1
4.3.2

Outline

Actions

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

Conditional operator

- Syntax: $c \rightarrow p \diamond q$, where c is of type Bool
- Intuition: behave as p if c is true, or otherwise, behave as q.

Conditional operator

- Syntax: $c \rightarrow p \diamond q$, where c is of type Bool
- Intuition: behave as p if c is true, or otherwise, behave as q.

Axioms

Cond1 true $\rightarrow x \diamond y=x$
Cond2 false $\rightarrow x \diamond y=y$

Sum operator

- Syntax: $\sum_{d: D} p(d)$
- Intuition: generalization of alternative composition (may behave as $p(d)$, for each value d of type D)

Sum operator

- Syntax: $\sum_{d: D} p(d)$
- Intuition: generalization of alternative composition (may behave as $p(d)$, for each value d of type D)

Axioms

$$
\begin{array}{ll}
\text { SUM1 } & \sum_{d: D} X=x \\
\text { SUM3 } & \sum_{d: D} X(d)=\sum_{d: D} X(d)+X(d) \\
\text { SUM4 } & \sum_{d: D}(X(d)+Y(d))=\sum_{d: D} X(d)+\sum_{d: D} Y(d) \\
\text { SUM5 } & \left(\sum_{d: D} X(d)\right) \cdot y=\sum_{d: D} X(d) \cdot y
\end{array}
$$

Exercises

4.5.1

4.5.2

