System Validation

Mohammad Mousavi

4. Sequential Processes: Theory

Sequential Processes

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013 TU Delft

Announcements

- ▶ There will be a guest lecturer on October 10, 2012.
- ▶ There will be no meetings on October 10, 2012.

Overview

- Motivation
- Actions
- ► Multi-actions
- ► Alternative and sequential composition
- Deadlock
- Conditional and sum operator

From Processes to Their Algebra

Motivation

▶ in practice graphical representation is monstrously big

Example

From Processes to Their Algebra

Motivation

- ▶ in practice graphical representation is monstrously big
- manipulating and analyzing the graphical representation is virtually impossible

From Processes to Their Algebra

Motivation

- ▶ in practice graphical representation is monstrously big
- manipulating and analyzing the graphical representation is virtually impossible

Solution: use a compact textual presentation and algebraic rules for manipulating them.

Outline

Actions

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

- ► Atomic building blocks of processes
- ► May represent: internal activities, sending messages, receiving messages and the result of a synchronization
- May take parameters, typically denoted by a(d) (natural number, boolean, or any other Abstract Data Type)

- ► Examples:
 - ▶ act rcv_coin: Euro;

- Examples:
 - ▶ act rcv_coin: Euro;
 - act snd_number,rcv_number: Nat;
 (instance: snd_number(1))

- **Examples**:
 - ▶ act rcv_coin: Euro;
 - act snd_number,rcv_number: Nat;
 (instance: snd_number(1))
 - act ack_number: Bool # Nat;

- **Examples**:
 - act rcv_coin: Euro;
 - act snd_number,rcv_number: Nat;
 (instance: snd_number(1))
 - act ack_number: Bool # Nat;
- ▶ N.B. actions are not functions (or procedures, in the programming languages' sense)

Outline

Action

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

- A number of actions happening at the same time
- Syntax:

$$\alpha ::= \tau \mid \mathbf{a} \mid \mathbf{a}(\vec{\mathbf{d}}) \mid \alpha \mid \beta,$$

- au is the internal (invisible) action
- Auxiliary operators:
 - ▶ Removal of multi-actions $\alpha \setminus \beta$
 - ▶ Inclusion between multi-action $\alpha \sqsubseteq \beta$
 - Stripping data off α

Axioms (Part I: Basic axioms)

$$\begin{array}{ll} \mathsf{MA1} & \alpha|\beta=\beta|\alpha\\ \mathsf{MA2} & (\alpha|\beta)|\gamma=\alpha|(\beta|\gamma)\\ \mathsf{MA3} & \alpha|\tau=\alpha \end{array}$$

Axioms (Part II: Removal of multi-actions $\alpha \setminus \beta$)

```
\begin{array}{ll} \mathsf{MD1} & \tau \setminus \alpha = \tau \\ \mathsf{MD2} & \alpha \setminus \tau = \alpha \\ \mathsf{MD3} & \alpha \setminus (\beta | \gamma) = (\alpha \setminus \beta) \setminus \gamma \\ \mathsf{MD4} & (a(d) | \alpha) \setminus a(d) = \alpha \\ \mathsf{MD5} & (a(d) | \alpha) \setminus b(e) = a(d) | (\alpha \setminus b(e)) \quad \text{if } a \not\equiv b \text{ or } d \not\approx e \end{array}
```

Axioms (Part III: Inclusion between multi-action $\alpha \sqsubseteq \beta$)

MS1
$$\tau \sqsubseteq \alpha = true$$

MS2 $a \sqsubseteq \tau = false$
MS3 $a(d)|\alpha \sqsubseteq a(d)|\beta = \alpha \sqsubseteq \beta$
MS4 $a(d)|\alpha \sqsubseteq b(e)|\beta = a(d)|(\alpha \setminus b(e)) \sqsubseteq \beta$ if $a \not\equiv b$ or $d \not\approx e$

Axioms (Part IV: Stripping data off α)

$$\begin{array}{ll} \text{MAN1} & \underline{\tau} = \tau \\ \text{MAN2} & \underline{a(d)} = a \\ \text{MAN3} & \underline{\alpha|\beta} = \underline{\alpha}|\underline{\beta} \end{array}$$

Exercises

$$(\alpha|\mathbf{a}(\mathbf{d}))\setminus\mathbf{a}(\mathbf{d})=\alpha$$

- 4.2.2.1
- 4.2.2.3

Outline

Action

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

Alternative composition

- ▶ Syntax: p + q
- ▶ Intuition: the process behaves as either p or q

Alternative composition

▶ Syntax: p + q

▶ Intuition: the process behaves as either *p* or *q*

Axioms

A1
$$x + y = y + x$$

A2 $x + (y + z) = (x + y) + z$
A3 $x + x = x$

Alternative composition

- ▶ Syntax: p + q
- ▶ Intuition: the process behaves as either p or q

Axioms

A1
$$x + y = y + x$$

A2 $x + (y + z) = (x + y) + z$
A3 $x + x = x$

Write $x \subseteq y$ for x + y = y.

Sequential composition

- ► Syntax: *p* · *q*
- ▶ Intuition: the process behaves as p and upon termination of p, as q.

Sequential composition

- ► Syntax: p · q
- ▶ Intuition: the process behaves as p and upon termination of p, as q.

Axioms

A4
$$(x + y) \cdot z = x \cdot z + y \cdot z$$

A5 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

(Delayable) Deadlock

- ► Syntax: δ
- Intuition: a process that cannot do anything but let the time pass

(Delayable) Deadlock

- ► Syntax: δ
- Intuition: a process that cannot do anything but let the time pass

Axioms

$$\begin{array}{ll} \mathsf{A6} & \alpha+\delta=\alpha \\ \mathsf{A7} & \delta{\cdot}x=\delta \end{array}$$

Exercises

- 4.3.1
- 4.3.2

Outline

Action

Multi-Actions

Alternative and Sequential Composition

Conditional and Sum Operators

Conditional operator

- ▶ Syntax: $c \rightarrow p \diamond q$, where c is of type Bool
- ▶ Intuition: behave as p if c is true, or otherwise, behave as q.

Conditional operator

- ▶ Syntax: $c \rightarrow p \diamond q$, where c is of type Bool
- ▶ Intuition: behave as p if c is true, or otherwise, behave as q.

Axioms

Cond1
$$true \rightarrow x \diamond y = x$$

Cond2 $false \rightarrow x \diamond y = y$

Sum operator

- ▶ Syntax: $\sum_{d:D} p(d)$
- Intuition: generalization of alternative composition (may behave as p(d), for each value d of type D)

Sum operator

- ▶ Syntax: $\sum_{d \in D} p(d)$
- Intuition: generalization of alternative composition (may behave as p(d), for each value d of type D)

Axioms

$$\begin{array}{ll} \text{SUM1} & \sum_{d:D} x = x \\ \text{SUM3} & \sum_{d:D} X(d) = \sum_{d:D} X(d) + X(d) \\ \text{SUM4} & \sum_{d:D} (X(d) + Y(d)) = \sum_{d:D} X(d) + \sum_{d:D} Y(d) \\ \text{SUM5} & (\sum_{d:D} X(d)) \cdot y = \sum_{d:D} X(d) \cdot y \end{array}$$

Exercises

- 4.5.1
- 4.5.2