System Validation

Mohammad Mousavi

7. Modal mu-Calculus

Modal μ-Calculus

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013
 TU Delft

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Specification using Temporal logic

- Fix observable events (interactions with external world)

Specification using Temporal logic

- Fix observable events (interactions with external world)

- Describe temporal properties using these

Specification using Temporal logic

- Fix observable events (interactions with external world)

- Describe temporal properties using these
- Verify the correctness of the properties with respect to some labeled transition system

A scientist interacts with its environment

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication

A scientist interacts with its environment

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication
- ...

Properties of interest

- the scientist is not willing to drink coffee now

A scientist interacts with its environment

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication
- ...

Properties of interest

- the scientist is not willing to drink coffee now
- the scientist is willing to drink both coffee and tea now

A scientist interacts with its environment

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication
- ...

Properties of interest

- the scientist is not willing to drink coffee now
- the scientist is willing to drink both coffee and tea now
- she always produces a publication after drinking coffee

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Hennessy-Milner logic

- Introduced by Hennessy and Milner in 1985

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 32(1):137-161, 1985.

Syntax of Hennesy-Milner logic

for $a \in A c t$

$$
F::=\text { true } \mid \text { false }|\neg F| F \wedge F|F \vee F|\langle a\rangle F \mid[a] F
$$

Syntax of Hennesy-Milner logic
for $a \in$ Act

$$
F::=\text { true } \mid \text { false }|\neg F| F \wedge F|F \vee F|\langle a\rangle F \mid[a] F
$$

where

- $\langle a\rangle F$ denotes that it is possible to perform action a and thereby (in the next state) satisfy F

Syntax of Hennesy-Milner logic
for $a \in$ Act

$$
F::=\text { true } \mid \text { false }|\neg F| F \wedge F|F \vee F|\langle a\rangle F \mid[a] F
$$

where

- $\langle a\rangle F$ denotes that it is possible to perform action a and thereby (in the next state) satisfy F
- $[a] F$ denotes that no matter how a process performs action a afterwards necessarily F holds

Syntax of Hennesy-Milner logic
for $a \in$ Act

$$
F::=\text { true } \mid \text { false }|\neg F| F \wedge F|F \vee F|\langle a\rangle F \mid[a] F
$$

where

- $\langle a\rangle F$ denotes that it is possible to perform action a and thereby (in the next state) satisfy F
- [a] F denotes that no matter how a process performs action a afterwards necessarily F holds
- There is a minimal subset

Syntax of Hennesy-Milner logic

For $A=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq$ Act with $n \geq 1$

- $\langle A\rangle F$ denotes $\left\langle a_{1}\right\rangle F \vee \cdots \vee\left\langle a_{n}\right\rangle F$ and $\langle\varnothing\rangle F=$ false

Syntax of Hennesy-Milner logic

For $A=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq$ Act with $n \geq 1$

- $\langle A\rangle F$ denotes $\left\langle a_{1}\right\rangle F \vee \cdots \vee\left\langle a_{n}\right\rangle F$ and $\langle\varnothing\rangle F=$ false
- $[A] F$ denotes $\left[a_{1}\right] F \wedge \cdots \wedge\left[a_{n}\right] F$ and $[\varnothing] F=$ true

Syntax of Hennesy-Milner logic

For $A=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq$ Act with $n \geq 1$

- $\langle A\rangle F$ denotes $\left\langle a_{1}\right\rangle F \vee \cdots \vee\left\langle a_{n}\right\rangle F$ and $\langle\varnothing\rangle F=$ false
- $[A] F$ denotes $\left[a_{1}\right] F \wedge \cdots \wedge\left[a_{n}\right] F$ and $[\varnothing] F=$ true

In the book, 'true' is also used for 'Act'.

Examples

- the scientist is not willing to drink coffee now

Examples

- the scientist is not willing to drink coffee now \neg 〈coffee \rangle true or \quad [coffee]false

Examples

- the scientist is not willing to drink coffee now

$$
\neg\langle\text { coffee }\rangle \text { true or } \quad[\text { coffee]false }
$$

- the scientist is willing to drink both coffee and tea now

Examples

- the scientist is not willing to drink coffee now

$$
\neg\langle\text { coffee }\rangle \text { true or } \quad \text { [coffee]false }
$$

- the scientist is willing to drink both coffee and tea now

〈coffee〉true $\wedge\langle$ tea \rangle true

Examples

- the scientist is not willing to drink coffee now

$$
\neg\langle\text { coffee }\rangle \text { true or } \quad \text { [coffee]false }
$$

- the scientist is willing to drink both coffee and tea now

$$
\langle\text { coffee }\rangle \text { true } \wedge\langle\text { tea }\rangle \text { true }
$$

- the scientist is willing to drink coffee, but not tea, now

Examples

- the scientist is not willing to drink coffee now

$$
\neg\langle\text { coffee }\rangle \text { true or } \quad \text { [coffee]false }
$$

- the scientist is willing to drink both coffee and tea now

$$
\langle\text { coffee }\rangle \text { true } \wedge\langle\text { tea }\rangle \text { true }
$$

- the scientist is willing to drink coffee, but not tea, now \langle coffee〉true $\wedge \neg$ 〈tea \rangle true

Examples

- the scientist will always produce a publication immediately after having drunk two coffees in a row

Examples

- the scientist will always produce a publication immediately after having drunk two coffees in a row
[coffee] $[$ coffee $](\langle$ pub \rangle true $\wedge[$ Act $\backslash\{p u b\}]$ false $)$

Typical formulas
 - the process is deadlocked

- the process can execute some action
- a must happen next
- F holds after one step

Typical formulas

- the process is deadlocked

[Act]false

- the process can execute some action
- a must happen next
- F holds after one step

Typical formulas

- the process is deadlocked

[Act]false

- the process can execute some action
$\langle A c t\rangle t r u e$
- a must happen next
- F holds after one step

Typical formulas

- the process is deadlocked

[Act]false

- the process can execute some action
$\langle A c t\rangle t r u e$
- a must happen next
$\langle a\rangle t r u e \wedge[A c t \backslash\{a\}]$ false
\langle Act \rangle true $\wedge[$ Act $\backslash\{a\}]$ false
- F holds after one step

Typical formulas

- the process is deadlocked

[Act]false

- the process can execute some action

〈Act〉true

- a must happen next
$\langle a\rangle$ true $\wedge[A c t \backslash\{a\}]$ false
$\langle A c t\rangle$ true $\wedge[$ Act $\backslash\{a\}]$ false
- F holds after one step
$[A c t] F \wedge\langle A c t\rangle t r u e$

Material for the Semantics

- This set of slides!
- Chapters 5 and 6 of book ‘Reactive Systems - Modelling, Specification and Verification' by L. Aceto, A. Ingólfsdóttir, K. Larsen and J. Srba
- Section 6.4 of the book (and possibly Section 15.3)

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a l s e \rrbracket=\varnothing$

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a / s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a / s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a / s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a\rangle \backslash\lceil\square \rrbracket$ where $\langle\cdot a \cdot\rangle$ is defined by
$\langle\cdot a\rangle T=\left\{p \in S \mid \exists p^{\prime} . p \xrightarrow{a} p^{\prime}\right.$ and $\left.p^{\prime} \in T\right\}$

Semantics of HML

With each formula associate a set of states where the formula is valid.
$\llbracket F \rrbracket \subseteq S$ is defined inductively by

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a l s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$
where $\langle\cdot a \cdot\rangle$ is defined by
$\langle\cdot a \cdot\rangle T=\left\{p \in S \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime}\right.$ and $\left.p^{\prime} \in T\right\}$
6. $\llbracket[a] F \rrbracket=[\cdot a \cdot] \llbracket F \rrbracket$
where $[\cdot a \cdot]$ is defined by
$[\cdot a \cdot] T=\left\{p \in S \mid \forall p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \Rightarrow p^{\prime} \in T\right\}$

Examples

- $\langle\cdot a \cdot\rangle\left\{s_{1}, t_{1}\right\}=\{s, t\}$

Examples

- $\langle\cdot a \cdot\rangle\left\{s_{1}, t_{1}\right\}=\{s, t\}$
$\cdot[\cdot a \cdot]\left\{s_{1}, t_{1}\right\}=\left\{s_{1}, s_{2}, t, t_{1}\right\}$

Is the HML formula $\langle a\rangle\langle b\rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Subformulas
true
〈b〉true
$\langle a\rangle\langle b\rangle$ true

Is the HML formula $\langle a\rangle\langle b\rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Subformulas
true
〈b〉true
$\langle a\rangle\langle b\rangle$ true

Is the HML formula $\langle a\rangle\langle b\rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Subformulas
true
〈b〉true
$\langle a\rangle\langle b\rangle$ true

Is the HML formula $\langle a\rangle[b]$ false satisfied?

Is the HML formula $\langle a\rangle[b]$ false satisfied?

[b]false

Is the HML formula $\langle a\rangle[b]$ false satisfied?

[b]false

Is the HML formula $[a]<b\rangle$ true satisfied?

Is the HML formula $[a]<b\rangle$ true satisfied?

Is the HML formula $[a]\langle b\rangle$ true satisfied?

Is the HML formula [a][b]false satisfied?

Is the HML formula [a][b]false satisfied?

[b]false

Is the HML formula $[a][b]$ false satisfied?

Outline

> Temporal logic

> Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Limitations of HML

Limited expressiveness of HML

Using Hennessy-Milner Logic we can only describe properties of behaviors with a finite depth.

Modal depth

- $m d($ true $)=m d($ false $)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Temporal Properties not Expressible in HML

- $\operatorname{Inv}(F)$ iff all reachable states satisfy F

$$
\operatorname{Inv}(F)=F \wedge[A c t] F \wedge[A c t][A c t] F \wedge[A c t][A c t][A c t] F \wedge \ldots
$$

- $\operatorname{Pos}(F)$ iff there is a reachable state which satisfies F
$\operatorname{Pos}(F)=F \vee\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle\langle A c t\rangle F \vee \ldots$

Temporal Properties not Expressible in HML

- Inv (F) iff all reachable states satisfy F

$$
\operatorname{Inv}(F)=F \wedge[A c t] F \wedge[A c t][A c t] F \wedge[A c t][A c t][A c t] F \wedge \ldots
$$

- $\operatorname{Pos}(F)$ iff there is a reachable state which satisfies F
$\operatorname{Pos}(F)=F \vee\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle\langle A c t\rangle F \vee \ldots$

Problems

- infinite formulae are not allowed in HML
- infinite formulae are difficult to handle

Why not to use recursion?

- $\operatorname{Inv}(F)$ expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F)$ expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

Why not to use recursion?

- $\operatorname{Inv}(F)$ expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F)$ expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

Recursion on natural numbers

$$
\begin{gathered}
n: n \stackrel{\text { def }}{=} n^{2} \\
n: n \stackrel{\text { def }}{=} n+1 \\
n: n \stackrel{\text { def }}{=} 1 \times n
\end{gathered}
$$

HML with one recursively defined variable

Syntax of Formulae
Formulae are given by the following abstract syntax

$$
F::=X \mid \text { true } \mid \text { false }\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F
$$

where $a \in A c t$ and X is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$
such that F_{X} is a formula of the logic (which can contain X).

HML with one recursively defined variable

Syntax of Formulae
Formulae are given by the following abstract syntax

$$
F::=X \mid \text { true } \mid \text { false }\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F
$$

where $a \in A c t$ and X is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$
such that F_{X} is a formula of the logic (which can contain X).
Alternative syntax:

$$
\begin{aligned}
F & ::=X \mid \text { true | false }\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F \\
& |\mu X . F| v X . F
\end{aligned}
$$

Example:

$$
X \stackrel{\min }{=} X
$$

Any set of states S satisfies the set-equation $X=X$. The least such set is \varnothing.

Example:

$$
X \stackrel{\min }{=} X
$$

Any set of states S satisfies the set-equation $X=X$. The least such set is \varnothing.

Example:

$$
X \stackrel{\max }{=} X
$$

Any set of states S satisfies the set-equation $X=X$. The greatest such set is S.

Eventually 'a' will be disabled:

$$
X \stackrel{?}{=}[a] \text { false } \vee\langle\text { Act }\rangle X
$$

The property is valid for the labeled transition system

Eventually 'a' will be disabled:

$$
X \stackrel{?}{=}[a] \text { false } \vee\langle\text { Act }\rangle X
$$

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0,2\}$ and $\{0,1,2\}$

Eventually 'a' will be disabled:

$$
X \stackrel{?}{=}[a] \text { false } \vee\langle\text { Act }\rangle X
$$

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0,2\}$ and $\{0,1,2\}$ We intended to describe the least solution!

$$
X \stackrel{\min }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

Example: A state can be reached where a cannot be executed:

$$
X \stackrel{\min }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

Example: A state can be reached where a cannot be executed:

$$
X \stackrel{\min }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

The unique least solution for this equation is the set of states \varnothing
Hence the property is not valid for the labeled transition system

Example: In every reachable state an a-transition is possible

$$
X \stackrel{?}{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

Solutions: $\varnothing,\{1\}$, and $\{0,1\}$

Example: In every reachable state an a-transition is possible

$$
X \stackrel{?}{=}\langle a\rangle \operatorname{true} \wedge[A c t] X
$$

Solutions: $\varnothing,\{1\}$, and $\{0,1\}$
We intended to describe the greatest solution!

$$
X \stackrel{\max }{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

Example: In every reachable state an a-transition is possible

$$
X \stackrel{\max }{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

Example: In every reachable state an a-transition is possible

$$
X \stackrel{\max }{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

The greatest solution for this equation is the set of states $\{1\}$
Thus property is not valid for the labeled transition system

$X \stackrel{\min }{=}\langle b\rangle$ true $\vee\langle A c t\rangle X$

There is a path to a state where $a b$ is possible

$$
X \stackrel{\min }{=}\langle b\rangle \text { true } \vee\langle A c t\rangle X
$$

There is a path to a state where $a b$ is possible

The least solution is the set of states $\{0,1,2,4\}$; thus, property is valid for the labeled transition system

$$
X \stackrel{\max }{=}\langle b\rangle \text { true } \wedge[b] X
$$

initially and after each b, one can take a b transition

$$
X \stackrel{\max }{=}\langle b\rangle \text { true } \wedge[b] X
$$

initially and after each b, one can take a b transition

The greatest solution is the set of states $\left\{s_{1}, s_{2}, t_{1}\right\}$.

Formulas for the properties that cannot be expressed in HML

- the scientist never drinks beer

$$
X \stackrel{\max }{=}[\text { beer }] \text { false } \wedge[\text { Act }] X
$$

Formulas for the properties that cannot be expressed in HML

- the scientist never drinks beer

$$
X \stackrel{\max }{=}[\text { beer }] \text { false } \wedge[A c t] X
$$

- the scientist always produces a publication after drinking coffee

$$
X \stackrel{\max }{=}[\text { coffee }](\langle\mathrm{pub}\rangle \text { true } \wedge[\text { Act } \backslash\{p u b\}] \text { false }) \wedge[A c t] X
$$

Formulas for the properties that cannot be expressed in HML

- the scientist never drinks beer

$$
X \stackrel{\max }{=}[\text { beer }] \text { false } \wedge[A c t] X
$$

- the scientist always produces a publication after drinking coffee

$$
X \stackrel{\max }{=}[\text { coffee }](\langle\mathrm{pub}\rangle \text { true } \wedge[\text { Act } \backslash\{p u b\}] \text { false }) \wedge[A c t] X
$$

- $\operatorname{Inv}(F)$

$$
X \stackrel{\max }{=} F \wedge[A c t] X
$$

Formulas for the properties that cannot be expressed in HML

- the scientist never drinks beer

$$
X \stackrel{\max }{=}[\text { beer }] \text { false } \wedge[A c t] X
$$

- the scientist always produces a publication after drinking coffee

$$
X \stackrel{\max }{=}[\text { coffee }](\langle\mathrm{pub}\rangle \text { true } \wedge[\text { Act } \backslash\{p u b\}] \text { false }) \wedge[A c t] X
$$

- $\operatorname{Inv}(F)$

$$
X \stackrel{\max }{=} F \wedge[A c t] X
$$

- $\operatorname{Pos}(F)$

$$
X \stackrel{\min }{=} F \vee\langle A c t\rangle X
$$

Outline

Temporal logic
 Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Semantics of Recursion (one variable)

- With each formula associate a set of states for which it is satisfied

$$
\llbracket F \rrbracket \subseteq S
$$

Semantics of Recursion (one variable)

- With each formula associate a set of states for which it is satisfied

$$
\llbracket F \rrbracket \subseteq S
$$

- How to deal with recursion variable X ?

Semantics of Recursion (one variable)

- With each formula associate a set of states for which it is satisfied

$$
\llbracket F \rrbracket \subseteq S
$$

- How to deal with recursion variable X ?
- Make an assumption on states satisfied by X. For every formula F we define a function $O_{F}: 2^{S} \rightarrow 2^{S}$ s.t.
- if S is the set of processes that satisfy X
- then $O_{F}(S)$ is the set of processes that satisfy F.

Definition of $O_{F}: 2^{S} \rightarrow 2^{S}$
For $S \subseteq S$

$$
\begin{aligned}
O_{X}(S) & =S \\
O_{\text {true }}(S) & =S \\
O_{\text {false }}(S) & =\varnothing \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}}(S) \cap O_{F_{2}}(S) \\
O_{F_{1} \vee F_{2}}(S) & =O_{F_{1}}(S) \cup O_{F_{2}}(S) \\
O_{\langle a\rangle F}(S) & =\langle\cdot a \cdot\rangle O_{F}(S) \\
O_{[a] F}(S) & =[\cdot a \cdot] O_{F}(S)
\end{aligned}
$$

Example

Example

1. $O_{\langle a\rangle} X(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$

Example

1. $O_{\langle a\rangle} X(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$

Example

1. $O_{\langle a\rangle} x(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$
2. $O_{\langle a\rangle}\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle O_{X}\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle\left\{s, s_{1}\right\}=\left\{s, s_{2}\right\}$

Example

1. $O_{\langle a\rangle} x(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$
2. $O_{\langle a\rangle} X\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle O_{X}\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle\left\{s, s_{1}\right\}=\left\{s, s_{2}\right\}$

Example

1. $O_{\langle a\rangle} x(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$
2. $O_{\langle a\rangle} X\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle O_{X}\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle\left\{s, s_{1}\right\}=\left\{s, s_{2}\right\}$
3. $O_{[b] X}\left(\left\{s_{1}\right\}\right)=[\cdot b \cdot] O_{X}\left(\left\{s_{1}\right\}\right)=[\cdot b \cdot]\left\{s_{1}\right\}=\left\{s_{1}, s_{2}\right\}$

Example

1. $O_{\langle a\rangle} X(\{s\})=\langle\cdot a \cdot\rangle O_{X}(\{s\})=\langle\cdot a \cdot\rangle\{s\}=\left\{s_{2}\right\}$
2. $O_{\langle a\rangle} X\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle O_{X}\left(\left\{s, s_{1}\right\}\right)=\langle\cdot a \cdot\rangle\left\{s, s_{1}\right\}=\left\{s, s_{2}\right\}$
3. $O_{[b] X}\left(\left\{s_{1}\right\}\right)=[\cdot b \cdot] O_{X}\left(\left\{s_{1}\right\}\right)=[\cdot b \cdot]\left\{s_{1}\right\}=\left\{s_{1}, s_{2}\right\}$

Observation
 Semantics of formula F

Observation

Semantics of formula F

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a l s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$ where $\langle\cdot a \cdot\rangle: 2^{S} \rightarrow 2^{S}$ is defined by

$$
\langle\cdot a \cdot\rangle S=\left\{p \in S \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \text { and } p^{\prime} \in S\right\}
$$

6. $\llbracket[a] F \rrbracket=[\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot]: 2^{S} \rightarrow 2^{S}$ is defined by

$$
[\cdot a \cdot] S=\left\{p \in S \mid \forall p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \Rightarrow p^{\prime} \in S\right\}
$$

Observation

Semantics of formula F

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a l s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$ where $\langle\cdot a \cdot\rangle: 2^{S} \rightarrow 2^{S}$ is defined by

$$
\langle\cdot a \cdot\rangle S=\left\{p \in S \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \text { and } p^{\prime} \in S\right\}
$$

6. $\llbracket[a] F \rrbracket=[\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot]: 2^{S} \rightarrow 2^{S}$ is defined by

$$
[\cdot a \cdot] S=\left\{p \in S \mid \forall p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \Rightarrow p^{\prime} \in S\right\}
$$

7. If $X \stackrel{\min }{=} F_{X}$ then $\llbracket X \rrbracket=\bigcap\left\{S \subseteq S \mid S=O_{F_{X}}(S)\right\}$

Observation

Semantics of formula F

1. $\llbracket t r u e \rrbracket=S$
2. $\llbracket f a l s e \rrbracket=\varnothing$
3. $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$ where $\langle\cdot a \cdot\rangle: 2^{S} \rightarrow 2^{S}$ is defined by

$$
\langle\cdot a \cdot\rangle S=\left\{p \in S \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \text { and } p^{\prime} \in S\right\}
$$

6. $\llbracket[a] F \rrbracket=[\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot]: 2^{S} \rightarrow 2^{S}$ is defined by

$$
[\cdot a \cdot] S=\left\{p \in S \mid \forall p^{\prime} \cdot p \xrightarrow{a} p^{\prime} \Rightarrow p^{\prime} \in S\right\}
$$

7. If $X \stackrel{\text { min }}{=} F_{X}$ then $\llbracket X \rrbracket=\bigcap\left\{S \subseteq S \mid S=O_{F_{X}}(S)\right\}$
8. If $X \stackrel{\max }{=} F_{X}$ then $\llbracket X \rrbracket=\bigcup\left\{S \subseteq S \mid S=O_{F_{X}}(S)\right\}$

Let S be a finite set.

Computing the solution of $X \stackrel{\min }{=} F_{X}$
There exists a natural number $m>0$ such that $\llbracket X \rrbracket=O_{F_{X}}{ }^{m}(\varnothing)$
Computing the solution of $X \stackrel{\max }{=} F_{X}$
There exist a natural number $M>0$ such that $\llbracket X \rrbracket=O_{F_{X}}{ }^{M}(S)$

Example: $X \stackrel{\min }{=}[a]$ false $\vee\langle A c t\rangle X$

Example: $X \stackrel{\text { min }}{=}[a]$ false $\vee\langle A c t\rangle X$

$$
\begin{aligned}
O_{F_{X}}(S) & =O_{[a] f a l s e}(S) \cup O_{\langle\text {Act }\rangle}(S) \\
& =[\cdot a \cdot] O_{\text {false }}(S) \cup\langle\cdot A c t \cdot\rangle O_{X}(S) \\
& =[\cdot a \cdot] \varnothing \cup\langle\cdot A c t \cdot\rangle S \\
& =\{2\} \cup\langle\cdot A c t \cdot\rangle S
\end{aligned}
$$

Example: $X \stackrel{\text { min }}{=}[a]$ false $\vee\langle A c t\rangle X$

$$
\begin{aligned}
O_{F_{X}}(S) & =O_{[a] f a l s e}(S) \cup O_{\langle\text {Act }\rangle}(S) \\
& =[\cdot a \cdot] O_{\text {false }}(S) \cup\langle\cdot A c t \cdot\rangle O_{X}(S) \\
& =[\cdot a \cdot] \varnothing \cup\langle\cdot A c t \cdot\rangle S \\
& =\{2\} \cup\langle\cdot A c t \cdot\rangle S
\end{aligned}
$$

1. $O_{F_{X}}(\varnothing)=\{2\} \cup\langle\cdot A c t \cdot\rangle \varnothing=\{2\} \cup \varnothing=\{2\}$

Example: $X \stackrel{\min }{=}[a]$ false $\vee\langle A c t\rangle X$

$$
\begin{aligned}
& \text { (} \begin{aligned}
O_{F_{X}}(S) & =O_{[a] f a l s e}(S) \cup O_{\langle A c t\rangle}(S) \\
& =[\cdot a \cdot] O_{\text {false }}(S) \cup\langle\cdot A c t \cdot\rangle O_{X}(S) \\
& =[\cdot a \cdot] \varnothing \cup\langle\cdot A c t \cdot\rangle S \\
& =\{2\} \cup\langle\cdot A c t \cdot\rangle S
\end{aligned} \\
& \text { 1. } \begin{array}{l}
O_{F_{X}}(\varnothing)=\{2\} \cup\langle\cdot A c t \cdot\rangle \varnothing=\{2\} \cup \varnothing=\{2\}
\end{array} \\
& \text { 2. } O_{F_{X}(\{2\})}=\{2\} \cup\langle\cdot A c t \cdot\rangle\{2\}=\{2\} \cup\{0\}=\{0,2\}
\end{aligned}
$$

Example: $X \stackrel{\text { min }}{=}[a]$ false $\vee\langle A c t\rangle X$

$$
\begin{aligned}
& O_{F_{X}}(S)=O_{[a] f a l s e}(S) \cup O_{\langle A c t\rangle X}(S) \\
& =[\cdot a \cdot] O_{\text {false }}(S) \cup\langle\cdot A c t \cdot\rangle O_{X}(S) \\
& =[\cdot a \cdot] \varnothing \cup\langle\cdot A c t \cdot\rangle S \\
& =\{2\} \cup\langle\cdot A c t \cdot\rangle S \\
& \text { 1. } O_{F_{X}}(\varnothing)=\{2\} \cup\langle\cdot A c t \cdot\rangle \varnothing=\{2\} \cup \varnothing=\{2\} \\
& \text { 2. } O_{F_{X}}(\{2\})=\{2\} \cup\langle\cdot A c t \cdot\rangle\{2\}=\{2\} \cup\{0\}=\{0,2\} \\
& \text { 3. } O_{F_{X}}(\{0,2\})=\{2\} \cup\langle\cdot A c t \cdot\rangle\{0,2\}=\{2\} \cup\{0\}=\{0,2\}
\end{aligned}
$$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

$$
\begin{aligned}
O_{F_{X}}(S) & =O_{\langle b| \text { true }}(S) \cap O_{[b b]}(S) \\
& =\langle\cdot b \cdot\rangle O_{\text {true }}(S) \cap[\cdot b \cdot] O_{X}(S) \\
& =\langle\cdot b \cdot\rangle S \cap[\cdot b \cdot] S \\
& =\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot] S
\end{aligned}
$$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

1. $O_{F_{X}}(S)=\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot] S=\left\{s_{1}, s_{2}, t_{1}\right\} \cap\left\{s, s_{1}, s_{2}, t, t_{1}\right\}=$ $\left\{s_{1}, s_{2}, t_{1}\right\}$

Example: $X \stackrel{\max }{=}\langle b\rangle$ true $\wedge[b] X$

1. $O_{F_{X}}(S)=\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot] S=\left\{s_{1}, s_{2}, t_{1}\right\} \cap\left\{s, s_{1}, s_{2}, t, t_{1}\right\}=$ $\left\{s_{1}, s_{2}, t_{1}\right\}$
2. $O_{F_{X}}\left(\left\{s_{1}, s_{2}, t_{1}\right\}\right)=\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot]\left\{s_{1}, s_{2}, t_{1}\right\}=$ $\left\{s_{1}, s_{2}, t_{1}\right\} \cap\left\{s, s_{1}, s_{2}, t, t_{1}\right\}=\left\{s_{1}, s_{2}, t_{1}\right\}$

Some temporal properties

- Safe (F) : for some execution F holds everywhere

$$
X \stackrel{\max }{=} F \wedge([\text { Act }] f a l s e \vee\langle A c t\rangle X)
$$

Some temporal properties

- Safe (F) : for some execution F holds everywhere

$$
X \stackrel{\max }{=} F \wedge([A c t] f a l s e \vee\langle A c t\rangle X)
$$

- Even (F) : eventually F will hold (in every execution)

$$
X \stackrel{\min }{=} F \vee(\langle A c t\rangle t r u e \wedge[A c t] X)
$$

Some temporal properties

- Safe (F) : for some execution F holds everywhere

$$
X \stackrel{\max }{=} F \wedge([\text { Act }] f a l s e \vee\langle A c t\rangle X)
$$

- Even (F) : eventually F will hold (in every execution)

$$
X \stackrel{\min }{=} F \vee(\langle A c t\rangle t r u e \wedge[A c t] X)
$$

- $F \mathcal{U}^{w} G: F$ holds in all states until a state is reached where G holds

$$
X \stackrel{\max }{=} G \vee(F \wedge[A c t] X)
$$

Some temporal properties

- Safe (F) : for some execution F holds everywhere

$$
X \stackrel{\max }{=} F \wedge([A c t] f a l s e \vee\langle A c t\rangle X)
$$

- Even (F) : eventually F will hold (in every execution)

$$
X \stackrel{\min }{=} F \vee(\langle A c t\rangle t r u e \wedge[A c t] X)
$$

- $F \mathcal{U}^{w} G: F$ holds in all states until a state is reached where G holds

$$
X \stackrel{\max }{=} G \vee(F \wedge[A c t] X)
$$

- $F \mathcal{U}^{s} G$: sooner or later G holds and until then F holds in all states traversed

$$
X \stackrel{\min }{=} G \vee(F \wedge\langle A c t\rangle t r u e \wedge[A c t] X)
$$

Some temporal properties

Using until we can express e.g. $\operatorname{Inv}(F)$ and $\operatorname{Even}(F)$:
$\operatorname{Inv}(F)$ and $F \mathcal{U}^{w}$ false are logically equivalent
$\operatorname{Even}(F)$ and true $\mathcal{U}^{s} F$ are logically equivalent

