System Validation

Mohammad Mousavi

7. Modal mu-Calculus

Modal *µ*-Calculus

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013 TU Delft

Mousavi: Modal µ-Calculus

・ロト ・回ト ・ヨト ・ヨト

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Specification using Temporal logic

Fix observable events (interactions with external world)

<ロ> (四) (四) (日) (日) (日)

Specification using Temporal logic

Fix observable events (interactions with external world)

Describe temporal properties using these

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

Specification using Temporal logic

Fix observable events (interactions with external world)

- Describe temporal properties using these
- Verify the correctness of the properties with respect to some labeled transition system

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication

▶ ...

・ロ・・ (日・・ (日・・ (日・)

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication
- ▶ ...

Properties of interest

the scientist is not willing to drink coffee now

・ロト ・回ト ・ヨト ・ヨト

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication
- ▶ ...

Properties of interest

- the scientist is not willing to drink coffee now
- the scientist is willing to drink both coffee and tea now

・ロト ・回ト ・ヨト ・ヨト

- coffee for taking coffee in
- coin for producing a coin
- pub for producing a publication

▶ ...

Properties of interest

- the scientist is not willing to drink coffee now
- the scientist is willing to drink both coffee and tea now
- she always produces a publication after drinking coffee

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

Hennessy-Milner logic

Introduced by Hennessy and Milner in 1985

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 32(1):137-161, 1985.

イロト イポト イヨト イヨト

for $a \in Act$

 $F ::= true \mid false \mid \neg F \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F$

for $a \in Act$

$$F ::= true \mid false \mid \neg F \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F$$

where

 (a)F denotes that it is possible to perform action a and thereby (in the next state) satisfy F

イロト イヨト イヨト イヨト

for $a \in Act$

 $F ::= true \mid false \mid \neg F \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F$

where

- (a)F denotes that it is possible to perform action a and thereby (in the next state) satisfy F
- [a] F denotes that no matter how a process performs action a afterwards necessarily F holds

for $a \in Act$

 $F ::= true \mid false \mid \neg F \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F$

where

- (a)F denotes that it is possible to perform action a and thereby (in the next state) satisfy F
- [a] F denotes that no matter how a process performs action a afterwards necessarily F holds
- There is a minimal subset

・ロン ・四 と ・ ヨ と ・ ヨ と

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion

For $A = \{a_1, \dots, a_n\} \subseteq Act$ with $n \ge 1$

• $\langle A \rangle F$ denotes $\langle a_1 \rangle F \lor \cdots \lor \langle a_n \rangle F$ and $\langle \emptyset \rangle F = false$

・ロン ・回と ・ヨン・モン・

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion

For $A = \{a_1, \cdots, a_n\} \subseteq Act$ with $n \ge 1$

- $\langle A \rangle F$ denotes $\langle a_1 \rangle F \lor \cdots \lor \langle a_n \rangle F$ and $\langle \emptyset \rangle F = false$
- [A]F denotes $[a_1]F \land \cdots \land [a_n]F$ and $[\emptyset]F = true$

▲口> ▲御> ▲注> ▲注>

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion

For $A = \{a_1, \cdots, a_n\} \subseteq Act$ with $n \ge 1$

- $\langle A \rangle F$ denotes $\langle a_1 \rangle F \lor \cdots \lor \langle a_n \rangle F$ and $\langle \emptyset \rangle F = false$
- [A]F denotes $[a_1]F \land \cdots \land [a_n]F$ and $[\emptyset]F = true$

In the book, 'true' is also used for 'Act'.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion
Examp	les			
·				
► the	e scientist is not wi	illing to drink co	offee now	

Temporal logic	Hernessy-willer logic	Semantics of HML	necuision	Semantics of Recursion
Examp	امم			
> the	e scientist is not wi	lling to drink on	ffoo now	
► lite	e scientist is not wi	ling to unit co	nee now	

Semantics of HMI

Recursion

Somantics of Recursion

¬⟨coffee⟩*true* or [coffee]*false*

Temporal logic

Hennessy-Milner logic

æ

・ロト ・回ト ・ヨト ・ヨト

remporariogio	ficinicooy minici logio	ocinantico or rinic	neouroion	ochiantico or neoaronom
Examp	es			
► the	scientist is not wil	lling to drink	coffee now	
	- <coffee>t</coffee>	<i>true</i> or	[coffee] false	
	(001100)			

Semantics of HML

Recursion

Semantics of Recursion

the scientist is willing to drink both coffee and tea now

Temporal logic

Hennessy-Milner logic

æ

remportariogio	mennessy minter logic	Octification of Film	neodroion	ociliantico or neoaronom
Exampl	00			
слаттр	65			
► the	scientist is not will	ina to drink	coffee now	
		3		
	¬⟨coffee⟩t	<i>rue</i> or	[coffee] <i>false</i>	
	(/-		[]	

Semantics of HMI

Recursion

Semantics of Recursion

the scientist is willing to drink both coffee and tea now

 $\langle coffee \rangle true \land \langle tea \rangle true$

Temporal logic

Hennessy-Milner logic

æ

・ロン ・四 と ・ ヨ と ・ ヨ と

Temporariogio	nennessy miner logio	oomantioo	OT THINL	neouroion	ochianaos or neoarsion	
Exampl						
► the	scientist is not wi	lling to d	rink cof	fee now		
	¬⟨coffee⟩	true	or [coffee] <i>false</i>		
the scientist is willing to drink both coffee and tea now						

Semantics of HML

Recursion

Semantics of Recursion

Hennessy-Milner logic

 $\langle coffee \rangle$ *true* $\land \langle tea \rangle$ *true*

the scientist is willing to drink coffee, but not tea, now

Temporal logic

æ

Exampl	es scientist is not wi	llina to (drink co	offee now	
	¬⟨coffee⟩	Ũ		[coffee]false	
► the	e scientist is willing	ı to drinl	k both (coffee and te	a now

Semantics of HML

Recursion

Semantics of Recursion

 $\langle coffee \rangle true \land \langle tea \rangle true$

the scientist is willing to drink coffee, but not tea, now

 $\langle coffee \rangle$ *true* $\land \neg \langle tea \rangle$ *true*

Temporal logic

Hennessy-Milner logic

3

<ロ> (四) (四) (三) (三) (三)

Examples

 the scientist will always produce a publication immediately after having drunk two coffees in a row

・ロト ・四ト ・ヨト ・ヨト

Examples

the scientist will always produce a publication immediately after having drunk two coffees in a row

 $[coffee][coffee](\langle pub \rangle true \land [Act \setminus \{pub\}] false)$

Mousavi: Modal µ-Calculus

イロト イヨト イヨト イヨト

the process is deadlocked

the process can execute some action

a must happen next

F holds after one step

・ロン ・回 と ・ヨン ・ヨン

the process is deadlocked

[Act]false

the process can execute some action

a must happen next

F holds after one step

・ロン ・回 と ・ヨン ・ヨン

the process is deadlocked

[Act]false

the process can execute some action

⟨*Act*⟩*true*

a must happen next

F holds after one step

イロン イロン イヨン イヨン

the process is deadlocked

[Act]false

the process can execute some action

(Act)true

a must happen next

 $\langle a \rangle$ true $\land [Act \setminus \{a\}]$ false $\langle Act \rangle$ true $\land [Act \setminus \{a\}]$ false

F holds after one step

the process is deadlocked

[Act]false

the process can execute some action

⟨*Act*⟩*true*

a must happen next

 $\langle a \rangle$ true $\land [Act \setminus \{a\}]$ false $\langle Act \rangle$ true $\land [Act \setminus \{a\}]$ false

F holds after one step

 $[Act]F \land \langle Act \rangle true$

《曰》《圖》《臣》《臣》

Material for the Semantics

- This set of slides!
- Chapters 5 and 6 of book 'Reactive Systems Modelling, Specification and Verification' by L. Aceto, A. Ingólfsdóttir, K. Larsen and J. Srba
- Section 6.4 of the book (and possibly Section 15.3)

・ロト ・回ト ・ヨト ・ヨト

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

・ロト・西ト・ヨト・ヨー もんの

Mousavi: Modal µ-Calculus

Semantics of HML

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S$ is defined inductively by

Semantics of HML

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S$ is defined inductively by 1. $\llbracket true \rrbracket = S$

æ

▲口→ ▲圖→ ▲理→ ▲理→

With each formula associate a set of states where the formula is valid.

- $\llbracket F \rrbracket \subseteq S$ is defined inductively by
 - 1. [[*true*]] = S
 - 2. **[***false*]] = ∅

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S$ is defined inductively by

 $3. \ \llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S$ is defined inductively by

$$3. \quad \llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$$

 $[F \land G] = [F] \cap [G]$ $4. [F \lor G] = [F] \cup [G]$

・ロン ・四 と ・ ヨ と ・ ヨ と …

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S \text{ is defined inductively by}$ 1. $\llbracket true \rrbracket = S$ 2. $\llbracket false \rrbracket = \emptyset$ 3. $\llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$ 4. $\llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$ 5. $\llbracket \langle a \rangle F \rrbracket = \langle \cdot a \cdot \rangle \llbracket F \rrbracket$ where $\langle \cdot a \cdot \rangle$ is defined by $\langle \cdot a \cdot \rangle T = \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p' \in T \}$

イロン イヨン イヨン ・

With each formula associate a set of states where the formula is valid.

 $\llbracket F \rrbracket \subseteq S$ is defined inductively by 1. [[*true*]] = S 2. **[**false**]** = ∅ 3. $[F \land G] = [F] \cap [G]$ 4. $[F \lor G] = [F] \cup [G]$ 5. $[\langle a \rangle F] = \langle \cdot a \cdot \rangle [F]$ where $\langle \cdot a \cdot \rangle$ is defined by $\langle a \rangle T = \{ p \in S \mid \exists p', p \xrightarrow{a} p' \text{ and } p' \in T \}$ 6. $[[a]F] = [\cdot a \cdot][F]$ where $[\cdot a \cdot]$ is defined by $[\cdot a \cdot]T = \{ p \in S \mid \forall p'. p \xrightarrow{a} p' \Rightarrow p' \in T \}$ (ロ) (四) (日) (日)

$$\land \langle \cdot a \cdot \rangle \{s_1, t_1\} = \{s, t\}$$

ъ

・ロン ・四 と ・ ヨン ・ ヨン

Is the HML formula $\langle a \rangle \langle b \rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Is the HML formula $\langle a \rangle \langle b \rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Is the HML formula $\langle a \rangle \langle b \rangle$ true satisfied by the labeled transition system (i.e., by its initial state)?

Is the HML formula $\langle a \rangle [b]$ false satisfied?

æ

・ロト ・四ト ・ヨト ・ヨト

Is the HML formula $\langle a \rangle [b]$ false satisfied?

Is the HML formula $\langle a \rangle [b]$ false satisfied?

Is the HML formula $[a]\langle b\rangle$ true satisfied?

Mousavi: Modal µ-Calculus

æ

・ロト ・四ト ・ヨト ・ヨト

Is the HML formula $[a]\langle b\rangle$ true satisfied?

æ

・ロト ・四ト ・ヨト ・ヨト

Is the HML formula $[a]\langle b \rangle$ true satisfied?

Is the HML formula [a][b] false satisfied?

Mousavi: Modal µ-Calculus

æ

・ロト ・四ト ・ヨト ・ヨト

Is the HML formula [a][b] false satisfied?

æ

Is the HML formula [a][b] false satisfied?

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

Mousavi: Modal µ-Calculus

Limitations of HML

Limited expressiveness of HML

Using Hennessy-Milner Logic we can only describe properties of behaviors with a finite depth.

Modal depth

- md(true) = md(false) = 0
- $md(F \land G) = md(F \lor G) = max\{md(F), md(G)\}$
- $\bullet md([a]F) = md(\langle a \rangle F) = md(F) + 1$

<ロ> (四) (四) (三) (三) (三) (三)

Temporal Properties not Expressible in HML
Inv(F) iff all reachable states satisfy F
$Inv(F) = F \land [Act]F \land [Act][Act]F \land [Act][Act][Act][Act]F \land \dots$
 Pos(F) iff there is a reachable state which satisfies F

Recursion

Semantics of Recursion

 $Pos(F) = F \lor \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle \langle Act \rangle F \lor \dots$

Temporal logic

Hennessy-Milner logic

э.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

Recursion

Semantics of Recursion

 $Pos(F) = F \lor \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle \langle Act \rangle F \lor \dots$

Problems

Temporal logic

Hennessy-Milner logic

- infinite formulae are not allowed in HML
- infinite formulae are difficult to handle

æ –

<ロ> (四) (四) (三) (三) (三)

Why not to use recursion?

- Inv(F) expressed by $X \stackrel{\text{def}}{=} F \land [Act]X$
- Pos(F) expressed by $X \stackrel{\text{def}}{=} F \lor \langle Act \rangle X$

Why not to use recursion?

- Inv(F) expressed by $X \stackrel{\text{def}}{=} F \land [Act]X$
- Pos(F) expressed by $X \stackrel{\text{def}}{=} F \lor \langle Act \rangle X$

Recursion on natural numbers

$$n: n \stackrel{\text{def}}{=} n^2$$

$$n : n \stackrel{\text{def}}{=} n + 1$$

$$n : n \stackrel{\text{def}}{=} 1 \times n$$

・ロン ・四 と ・ 回 と ・ 日 と

HML with one recursively defined variable Syntax of Formulae Formulae are given by the following abstract syntax

 $F ::= X \mid true \mid false \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid \langle a \rangle F \mid [a]F$

where $a \in Act$ and X is a distinguished variable with a definition

• $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$

such that F_X is a formula of the logic (which can contain X).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

HML with one recursively defined variable Syntax of Formulae Formulae are given by the following abstract syntax

 $F ::= X \mid true \mid false \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid \langle a \rangle F \mid [a]F$

where $a \in Act$ and X is a distinguished variable with a definition

• $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$

such that F_X is a formula of the logic (which can contain X).

Alternative syntax:

$$F ::= X \mid true \mid false \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid \langle a \rangle F \mid [a]F$$
$$\mid \mu X.F \mid \nu X.F$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion
-				
Examp	le:			
		min		
		$X \stackrel{\min}{=} X$		

Any set of states *S* satisfies the set-equation X = X. The least such set is \emptyset .

イロト イポト イヨト イヨト

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion
Examp	<u>ام</u> :			
слаттр	ie.			
		min		
		$X \stackrel{\min}{=} X$		
		$\Lambda - \Lambda$		

Any set of states *S* satisfies the set-equation X = X. The least such set is \emptyset .

Example:

$$X \stackrel{\max}{=} X$$

Any set of states *S* satisfies the set-equation X = X. The greatest such set is *S*.

Eventually 'a' will be disabled:

 $X \stackrel{?}{=} [a]$ false $\lor \langle Act \rangle X$

The property is valid for the labeled transition system

・ロン ・四ト ・ヨト ・ヨン

Eventually 'a' will be disabled:

 $X \stackrel{?}{=} [a] \text{false} \lor \langle Act \rangle X$

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0, 2\}$ and $\{0, 1, 2\}$

(ロ) (四) (三) (三)

Eventually 'a' will be disabled:

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0,2\}$ and $\{0,1,2\}$ We intended to describe the least solution!

$$X \stackrel{\min}{=} [a] false \lor \langle Act \rangle X$$

(日) (同) (三) (三)

æ

・ロン ・四 と ・ ヨ と ・ ヨ と ・

The unique least solution for this equation is the set of states \varnothing

Hence the property is not valid for the labeled transition system

・ロン ・四 と ・ ヨン ・ ヨン ・

Example: In every reachable state an a-transition is possible

$$X \stackrel{?}{=} \langle a \rangle$$
true $\land [Act]X$

Solutions: Ø, {1}, and {0, 1}

Mousavi: Modal µ-Calculus

・ロン ・四 と ・ ヨ と ・ ヨ と

Example: In every reachable state an a-transition is possible

$$X \stackrel{?}{=} \langle a \rangle$$
true $\land [Act]X$

Solutions: Ø, {1}, and {0, 1}

We intended to describe the greatest solution!

$$X \stackrel{\text{max}}{=} \langle a \rangle true \land [Act] X$$

・ロ・・ (日・・ (日・・ (日・)

・ロン ・四 と ・ ヨ と ・ ヨ と

Semantics of HML

Recursion

Hennessy-Milner logic

The greatest solution for this equation is the set of states {1}

Thus property is not valid for the labeled transition system

・ロト ・回ト ・ヨト ・ヨト

Semantics of Recursion

・ロン ・四 と ・ ヨ と ・ ヨ と

Recursion

The least solution is the set of states {0, 1, 2, 4}; thus, property is valid for the labeled transition system ・ロン ・回 と ・ ヨ と ・ ヨ と

$$X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$$

initially and after each b, one can take a b transition

・ロン ・四ト ・ヨト ・ヨン

$$X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$$

initially and after each b, one can take a b transition

.

The greatest solution is the set of states $\{s_1, s_2, t_1\}$.

Mousavi: Modal µ-Calculus

Formulas for the properties that cannot be expressed in HML

the scientist never drinks beer

$$X \stackrel{\text{max}}{=} [\text{beer}] false \land [Act] X$$

Formulas for the properties that cannot be expressed in HML

the scientist never drinks beer

$$X \stackrel{\text{max}}{=} [\text{beer}] \text{false} \land [Act] X$$

 the scientist always produces a publication after drinking coffee

 $X \stackrel{\text{max}}{=} [\text{coffee}](\langle \text{pub} \rangle true \land [Act \setminus \{\text{pub}\}] false) \land [Act]X$

・ロン ・四 と ・ ヨン ・ ヨン ・

Formulas for the properties that cannot be expressed in HML

the scientist never drinks beer

$$X \stackrel{\text{max}}{=} [\text{beer}] \text{false} \land [Act] X$$

 the scientist always produces a publication after drinking coffee

 $X \stackrel{\text{max}}{=} [\text{coffee}](\langle \text{pub} \rangle true \land [Act \setminus \{\text{pub}\}] false) \land [Act]X$

► Inv(F) $X \stackrel{\max}{=} F \land [Act]X$

・ロン ・四と ・ヨン ・ヨン

Formulas for the properties that cannot be expressed in HML

the scientist never drinks beer

$$X \stackrel{\text{max}}{=} [\text{beer}] \text{false} \land [Act] X$$

 the scientist always produces a publication after drinking coffee

 $X \stackrel{\text{max}}{=} [\text{coffee}](\langle \text{pub} \rangle true \land [Act \setminus \{\text{pub}\}] false) \land [Act]X$

► *Inv*(*F*)

$$X \stackrel{\text{max}}{=} F \wedge [Act]X$$

▶ *Pos*(*F*)

$$X \stackrel{\min}{=} F \lor \langle Act \rangle X$$

<ロ> (四) (四) (三) (三) (三)

Outline

Temporal logic

Hennessy-Milner logic

Semantics of HML

Recursion

Semantics of Recursion

イロト イヨト イヨト イヨト

・ロト ・回ト ・ヨト ・ヨト

- ▶ Make an assumption on states satisfied by *X*. For every formula *F* we define a function $O_F : 2^S \rightarrow 2^S$ s.t.
 - ▶ if S is the set of processes that satisfy X
 - then $O_F(S)$ is the set of processes that satisfy *F*.

ヘロト 人間 と 人 ヨ と 人 ヨ とう

Definition of
$$O_F : 2^S \rightarrow 2^S$$

For $S \subseteq S$

$$\begin{array}{rcl} O_X(S) &=& S\\ O_{true}(S) &=& S\\ O_{false}(S) &=& \varnothing\\ O_{F_1 \wedge F_2}(S) &=& O_{F_1}(S) \cap O_{F_2}(S)\\ O_{F_1 \vee F_2}(S) &=& O_{F_1}(S) \cup O_{F_2}(S)\\ O_{\langle a \rangle F}(S) &=& \langle \cdot a \cdot \rangle O_F(S)\\ O_{[a]F}(S) &=& [\cdot a \cdot] O_F(S) \end{array}$$

э.

< □ > < □ > < □ > < □ > < □ > .

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion
Example	<u>e</u>	5	a	
		b		

1 1 5 4 1

0 -----

and a second MRI and a second second second

s₁ b a

3

・ロン ・四 と ・ ヨ と ・ ヨ と

е			
	Ļ		
	v C		
		а	
а		\backslash	
s 1	D 🔨	≯ s ₂	
K			
	а		
		<i>.</i> .	
$_{a\rangle X}(\{s\}) = \langle \cdot a \cdot \rangle O_X($	$\{\{s\}\} = \langle \cdot a \cdot \rangle \{s\} =$	= { <i>s</i> ₂ }	
	e sı		

Semantics of HML

Recursion

Semantics of Recursion

Temporal logic

Hennessy-Milner logic

・ロト ・回ト ・ヨト ・ヨト

	······			
Exampl	_	Ļ		
	s ₁	X S b	a \$2 (a))X
1. <i>O</i> (2	$_{{\mathfrak a} angle X}(\{{m s}\}) = \langle \cdot {m a} \cdot angle O_X({m s}) = \langle \cdot {m a} \cdot angle O_X({m s}) \rangle$	$\{s\}) = \langle \cdot a \cdot \rangle \{s\} =$	= { <i>s</i> ₂ }	

Semantics of HML

Recursion

Semantics of Recursion

Temporal logic

Hennessy-Milner logic

・ロト ・回ト ・ヨト ・ヨト

Temporal logic	Hennessy-Milner logic	Semantics of HML	Recursion	Semantics of Recursion
Example	e x sı	x s b b a	a s ₂	
	$\langle a_{\lambda} \rangle_{X}(\{s\}) = \langle \cdot a \cdot \rangle O_{X}(\{s, s_{1}\}) = \langle \cdot a \cdot \rangle O_{$			{ <i>s</i> , <i>s</i> ₂ }

ъ

▲□▶ ▲□▶ ▲国▶ ▲国▶ -

$$Example$$

$$I. O_{(a),X}(\{s\}) = \langle \cdot a \cdot O_X(\{s\}) = \langle \cdot a \cdot \{s\}\} = \{s_2\}$$

$$2. O_{(a),X}(\{s,s_1\}) = \langle \cdot a \cdot O_X(\{s_1\}) = \langle \cdot a \cdot \{s_1\}\} = \{s,s_2\}$$

$$3. O_{[b],X}(\{s_1\}) = [\cdot b \cdot]O_X(\{s_1\}) = [\cdot b \cdot]\{s_1\} = \{s_1,s_2\}$$

Competition of HMI

Desuraion

Competing of Requirelen

Tomporel Jagie

Honnoooy Milnor Jogio

Mousavi: Modal µ-Calculus

・ロット 白マ ・山マ ・山マ ・

Mousavi: Modal µ-Calculus

- 1. [[*true*]] = S
- **2**. **[***false***]** = ∅
- $3. \ \llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $4. \quad \llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$
- 5. $[\![\langle a \rangle F]\!] = \langle \cdot a \cdot \rangle [\![F]\!]$ where $\langle \cdot a \cdot \rangle : 2^S \to 2^S$ is defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p' \in S \}$$

6. $\llbracket [a]F \rrbracket = [\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot] : 2^S \to 2^S$ is defined by

$$[\cdot a \cdot]S = \{p \in S \mid \forall p'. \ p \xrightarrow{a} p' \Rightarrow p' \in S\}$$

ヘロン 人間 とくほ とくほ とう

- 1. [[*true*]] = S
- **2**. **[***false***]** = ∅
- $3. \ \llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $4. \quad \llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$
- 5. $[\![\langle a \rangle F]\!] = \langle \cdot a \cdot \rangle [\![F]\!]$ where $\langle \cdot a \cdot \rangle : 2^S \to 2^S$ is defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p' \in S \}$$

6. $\llbracket [a]F \rrbracket = [\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot] : 2^S \to 2^S$ is defined by

$$[\cdot a \cdot]S = \{p \in S \mid \forall p'. p \xrightarrow{a} p' \Rightarrow p' \in S\}$$

7. If $X \stackrel{\text{min}}{=} F_X$ then $\llbracket X \rrbracket = \bigcap \{S \subseteq S \mid S = O_{F_X}(S)\}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- 1. [[*true*]] = S
- **2**. **[***false***]** = ∅
- $3. \ \llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $4. \quad \llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$
- 5. $[\![\langle a \rangle F]\!] = \langle \cdot a \cdot \rangle [\![F]\!]$ where $\langle \cdot a \cdot \rangle : 2^S \to 2^S$ is defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p' \in S \}$$

6. $\llbracket [a]F \rrbracket = [\cdot a \cdot] \llbracket F \rrbracket$ where $[\cdot a \cdot] : 2^S \to 2^S$ is defined by

$$[\cdot a \cdot]S = \{p \in S \mid \forall p'. p \xrightarrow{a} p' \Rightarrow p' \in S\}$$

7. If $X \stackrel{\min}{=} F_X$ then $\llbracket X \rrbracket = \bigcap \{S \subseteq S \mid S = O_{F_X}(S)\}$ 8. If $X \stackrel{\max}{=} F_X$ then $\llbracket X \rrbracket = \bigcup \{S \subseteq S \mid S = O_{F_X}(S)\}$

Let *S* be a finite set.

Computing the solution of $X \stackrel{\min}{=} F_X$

There exists a natural number m > 0 such that $\llbracket X \rrbracket = O_{F_X}^m(\emptyset)$

Computing the solution of $X \stackrel{\text{max}}{=} F_X$

There exist a natural number M > 0 such that $\llbracket X \rrbracket = O_{F_X}^M(S)$

æ

・ロト ・回ト ・ヨト ・ヨト

・ロト ・四ト ・ヨト ・ヨト

1. $O_{F_{\chi}}(\emptyset) = \{2\} \cup \langle \cdot Act \cdot \rangle \emptyset = \{2\} \cup \emptyset = \{2\}$

・ロト ・四ト ・ヨト ・ヨト ・

1.
$$O_{F_X}(\emptyset) = \{2\} \cup \langle \cdot Act \cdot \rangle \emptyset = \{2\} \cup \emptyset = \{2\}$$

2. $O_{F_X}(\{2\}) = \{2\} \cup \langle \cdot Act \cdot \rangle \{2\} = \{2\} \cup \{0\} = \{0, 2\}$

・ロト ・四ト ・ヨト ・ヨト

1.
$$O_{F_X}(\emptyset) = \{2\} \cup \langle \cdot Act \cdot \rangle \emptyset = \{2\} \cup \emptyset = \{2\}$$

2. $O_{F_X}(\{2\}) = \{2\} \cup \langle \cdot Act \cdot \rangle \{2\} = \{2\} \cup \{0\} = \{0, 2\}$
3. $O_{F_X}(\{0, 2\}) = \{2\} \cup \langle \cdot Act \cdot \rangle \{0, 2\} = \{2\} \cup \{0\} = \{0, 2\}$

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$

Mousavi: Modal µ-Calculus

э

Semantics of Recursion

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$

$$\begin{array}{lll} O_{F_X}(S) &=& O_{\langle b \rangle true}(S) \cap O_{[b]X}(S) \\ &=& \langle \cdot b \cdot \rangle O_{true}(S) \cap [\cdot b \cdot] O_X(S) \\ &=& \langle \cdot b \cdot \rangle S \cap [\cdot b \cdot] S \\ &=& \{s_1, s_2, t_1\} \cap [\cdot b \cdot] S \end{array}$$

э

Semantics of Recursion

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$

Mousavi: Modal µ-Calculus

э

Semantics of Recursion

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$

Mousavi: Modal µ-Calculus

э

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \land [b] X$

1. $O_{F_X}(S) = \{s_1, s_2, t_1\} \cap [\cdot b \cdot]S = \{s_1, s_2, t_1\} \cap \{s, s_1, s_2, t, t_1\} = \{s_1, s_2, t_1\}$

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

Example: $X \stackrel{\text{max}}{=} \langle b \rangle true \wedge [b] X$

1. $O_{F_{\chi}}(S) = \{s_1, s_2, t_1\} \cap [\cdot b \cdot]S = \{s_1, s_2, t_1\} \cap \{s, s_1, s_2, t, t_1\} = \{s_1, s_2, t_1\}$

2.
$$O_{F_X}({s_1, s_2, t_1}) = {s_1, s_2, t_1} \cap [\cdot b \cdot] {s_1, s_2, t_1} = {s_1, s_2, t_1} \cap {s, s_1, s_2, t, t_1} = {s_1, s_2, t_1}$$

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

► Safe(F): for some execution F holds everywhere

$$X \stackrel{\text{max}}{=} F \land ([Act] false \lor \langle Act \rangle X)$$

・ロト ・回ト ・ヨト ・ヨト

Safe(F): for some execution F holds everywhere

$$X \stackrel{\text{max}}{=} F \land ([Act] false \lor \langle Act \rangle X)$$

Even(F): eventually F will hold (in every execution)

$$X \stackrel{\min}{=} F \lor (\langle Act \rangle true \land [Act]X)$$

Safe(F): for some execution F holds everywhere

$$X \stackrel{\text{max}}{=} F \land ([Act] false \lor \langle Act \rangle X)$$

Even(F): eventually F will hold (in every execution)

$$X \stackrel{\min}{=} F \lor (\langle Act \rangle true \land [Act]X)$$

► F U^w G: F holds in all states until a state is reached where G holds

$$X \stackrel{\max}{=} G \lor (F \land [Act]X)$$

<ロ> <四> <四> <四> <三</td>

Safe(F): for some execution F holds everywhere

$$X \stackrel{\text{max}}{=} F \land ([Act] false \lor \langle Act \rangle X)$$

Even(F): eventually F will hold (in every execution)

$$X \stackrel{\min}{=} F \lor (\langle Act \rangle true \land [Act]X)$$

► F U^w G: F holds in all states until a state is reached where G holds

$$X \stackrel{\max}{=} G \lor (F \land [Act]X)$$

► F U^s G: sooner or later G holds and until then F holds in all states traversed

$$X \stackrel{\min}{=} G \lor (F \land \langle Act \rangle true \land [Act]X)$$

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ● ● ●

Using until we can express e.g. Inv(F) and Even(F):

Inv(F) and $F \mathcal{U}^w$ false are logically equivalent

Even(F) and $true \mathcal{U}^s F$ are logically equivalent

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで