System Validation

Mohammad Mousavi
2. Strong bahavioral equivalences and weak behavioral equivalences part 1.

Behavioral Equivalences

Mohammad Mousavi

TU/Eindhoven

System Validation, 2012-2013
 TU Delft

Overview

- Organizational matters (recap)
- Motivation
- Labelled Transition Systems,
- Strong equivalences:

1. trace equivalence,
2. language equivalence
3. strong bisimilarity,
4. Exercises: 2.3.2, 2.3.9, 2.3.10

Examination(s)

Theory:
E1 End of Quarter 1, 2-11-2012, 14:00-17:00
E2 Resit: End of Quarter 2, 30-01-2013, 14:00-17:00
Do register using Osiris.
Practical project P (compulsory, no pass without the project)

$$
M=\frac{M a x(E 1, E 2)+P}{2}
$$

Project：Procedure

－Formulate informal requirements

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world
- Rephrase the requirements in terms of interactions

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world
- Rephrase the requirements in terms of interactions
- Define the system architecture and internal interactions

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world
- Rephrase the requirements in terms of interactions
- Define the system architecture and internal interactions
- Model the system behavior

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world
- Rephrase the requirements in terms of interactions
- Define the system architecture and internal interactions
- Model the system behavior
- Verify the requirements on the model

Project: Procedure

- Formulate informal requirements
- Define interactions with the outside world
- Rephrase the requirements in terms of interactions
- Define the system architecture and internal interactions
- Model the system behavior
- Verify the requirements on the model

Iterate the last two items until requirements are satisfied.

Project: Procedure

- Carried out in groups of 4; form your groups and email them to me, before September 14, 2012.

Project: Procedure

- Carried out in groups of 4; form your groups and email them to me, before September 14, 2012.
- Weekly progress meetings of 15 minutes with all group members; prepare well beforehand.

Project: Procedure

- Carried out in groups of 4 ; form your groups and email them to me, before September 14, 2012.
- Weekly progress meetings of 15 minutes with all group members; prepare well beforehand.
- Deadlines and deliverables:

First deliverable October 5: Report including requirements, interactions and architecture
cond deliverable October 19: Report (complete structure)
Final deliverable November 2: Report, source files for models, and reflections

Project: Short Description

- Inspired by the packet storage system, by Vanderlande Industries
- 5 controllers for elevators, conveyor belts and racks
- Several requirements:
 deadlock freedom, avoiding clash, maximum efficiency

News

- The examination at the end of Q1 is moved to November 2, 2012.
- The location for weekly meetings will be LH 1.430.
- The course reader is ready to order from the printshop (order nr. 06917530021).

Behavioral Equivalences

Actions

- Atomic building blocks of models
- May denote: internal behavior or interaction with the environment
- Can be composed to obtain behavior

Behavioral Equivalences

Motivation

- verification: check whether an implementation conforms to the specification;
- implementation: transition system with more actions added;
- method: abstracting and comparing with spec.

Behavioral Equivalences

Motivation

- verification: check whether an implementation conforms to the specification;
- implementation: transition system with more actions added;
- method: abstracting and comparing with spec.

Example

Behavioral Equivalences

Motivation

- verification: check whether an implementation conforms to the specification;
- implementation: transition system with more actions added;
- method: abstracting and comparing with spec.

Example

behavioral equivalence needed to compare behavioral models

Behavioral Equivalences

Requirements

Desired behavioral equivalence should:

- neglect immaterial differences (not too fine);
- note important differences (not too coarse);
- should be preserved under context (should be a congruence). depends on the particular application domain.

Branching-Time Linear-Time Spectrum
There is a myriad of behavioral equivalences with different practical motivations.

Labeled Transition Systems

An LTS is a 5-tuple $\langle S, A c t, \rightarrow, s, T\rangle$:

- S is a set of states,
- Act is a set of (multi-)actions,
- $\rightarrow \subseteq S \times$ Act $\times S$ is the transition relation.
- $s \in S$ is the initial state,
- $T \subseteq S$ is the set of terminating states,

Labeled Transition Systems

An LTS is a 5-tuple $\langle S, A c t, \rightarrow, s, T\rangle$:

- S is a set of states,
- Act is a set of (multi-)actions,
- $\rightarrow \subseteq S \times$ Act $\times S$ is the transition relation.
- $s \in S$ is the initial state,
- $T \subseteq S$ is the set of terminating states,

Write $t \xrightarrow{a} t^{\prime}$ for $\left(t, a, t^{\prime}\right) \in \rightarrow$.
Write $A_{c t}{ }_{\sqrt{ }}$ for $\operatorname{Act} \cup\{\sqrt{ }\}$.

Trace equivalence

Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in \operatorname{Traces}(t)$,

Trace equivalence

Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,

Trace equivalence

Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $\forall_{t_{0}^{\prime} \in S,}, a \in A c t, \sigma \in A c t \sqrt{V}^{*} a \sigma \in \operatorname{Traces}(t)$ when $\exists \exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Trace equivalence

Traces of a State
For state $t \in S$, $\operatorname{Traces}(t)$ is the minimal set satisfying:

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $\forall_{t_{0}^{\prime} \in S}, a \in A c t, \sigma \in A c t \mathbb{V}^{*} a \sigma \in \operatorname{Traces}(t)$ when $\exists_{t^{\prime} \in S} t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Trace Equivalence
For states t, t^{\prime}, t is trace equivalent to t^{\prime} iff $\operatorname{Traces}(t)=\operatorname{Traces}\left(t^{\prime}\right)$.

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

- $\operatorname{Traces}\left(s_{2}\right)=\operatorname{Traces}\left(s_{3}\right)=\operatorname{Traces}\left(t_{3}\right)=$ $\operatorname{Traces}\left(t_{4}\right)=\{\epsilon, \sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

- $\operatorname{Traces}\left(s_{2}\right)=\operatorname{Traces}\left(s_{3}\right)=\operatorname{Traces}\left(t_{3}\right)=$ $\operatorname{Traces}\left(t_{4}\right)=\{\epsilon, \sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{5}\right)=\{\epsilon\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

- $\operatorname{Traces}\left(s_{2}\right)=\operatorname{Traces}\left(s_{3}\right)=\operatorname{Traces}\left(t_{3}\right)=$ $\operatorname{Traces}\left(t_{4}\right)=\{\epsilon, \sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{5}\right)=\{\epsilon\}$,
- $\operatorname{Traces}\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

- $\operatorname{Traces}\left(s_{2}\right)=\operatorname{Traces}\left(s_{3}\right)=\operatorname{Traces}\left(t_{3}\right)=$ $\operatorname{Traces}\left(t_{4}\right)=\{\epsilon, \sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{5}\right)=\{\epsilon\}$,
- Traces $\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{1}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}$, Traces $\left(t_{2}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,

1. $\epsilon \in \operatorname{Traces}(t)$,
2. $\sqrt{ } \in \operatorname{Traces}(t)$ when $t \in T$,
3. $a \sigma \in \operatorname{Traces}(t)$ when $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Traces}\left(t^{\prime}\right)$.

Traces: An Example

- $\operatorname{Traces}\left(s_{2}\right)=\operatorname{Traces}\left(s_{3}\right)=\operatorname{Traces}\left(t_{3}\right)=$ $\operatorname{Traces}\left(t_{4}\right)=\{\epsilon, \sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{5}\right)=\{\epsilon\}$,
- Traces $\left(s_{1}\right)=\{\epsilon$, coffee, tea, coffee $\sqrt{ }$, tea $\sqrt{ }\}$,
- $\operatorname{Traces}\left(t_{1}\right)=\{\epsilon$, coffee, coffee $\sqrt{ }\}$, $\operatorname{Traces}\left(t_{2}\right)=\{\epsilon$, tea, tea $\sqrt{ }\}$,
- $\operatorname{Traces}\left(s_{0}\right)=\operatorname{Traces}\left(t_{0}\right)=$
 $\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ }\}$.

Trace Equivalence: An Observation

Observation
$\operatorname{Traces}\left(s_{0}\right)=\operatorname{Traces}\left(t_{0}\right)=$
$\{\epsilon$, coin, coin coffee, coin tea, coin coffee $\sqrt{ }$, coin tea $\sqrt{ }\}$
Moral of the Story
Trace equivalence is usually too coarse (neglects important differences).

Language equivalence

Language
Lang (t):

- $\epsilon \in \operatorname{Lang}(t)$ if $t \notin T$ and there are no $t^{\prime} \in S$ and $a \in$ Act such that $t \xrightarrow{a} t^{\prime}$;
- $\checkmark \in \operatorname{Lang}(t)$ if $t \in T$; and
- if $t \xrightarrow{a} t^{\prime}$ and $\sigma \in \operatorname{Lang}\left(t^{\prime}\right)$ then $a \sigma \in \operatorname{Lang}(t)$.

Two states $t, u \in S$ are language equivalent iff $\operatorname{Traces}(t)=\operatorname{Traces}(u)$ and $\operatorname{Lang}(t)=\operatorname{Lang}(u)$.

Bisimulation

$R \subseteq S \times S$ is an (auto-)bisimulation relation when for all $\forall_{\left(t_{0}, t_{1}\right) \in R, a \in A c t}$

- $\forall_{t_{0}^{\prime} \in S} t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow \exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{a} t_{1}^{\prime} \wedge\left(t_{0}^{\prime}, t_{1}^{\prime}\right) \in R$,
- $\forall_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{a} t_{1}^{\prime} \Rightarrow \exists_{t_{0}^{\prime} \in S} \quad t_{0} \xrightarrow{a} t_{0}^{\prime} \wedge\left(t_{0}^{\prime}, t_{1}^{\prime}\right) \in R$, and
- $t_{0} \sqrt{ } \Leftrightarrow t_{1} \sqrt{ }$.

Bisimulation

$$
\begin{aligned}
& \forall_{\left(t_{0}, t_{1}\right) \in R} \\
& \quad t_{0} \xrightarrow[\rightarrow]{a} t_{0}^{\prime} \Rightarrow \exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{a} t_{1}^{\prime} \wedge t_{0}^{\prime} R t_{1}^{\prime} \text {, and vice versa, } \\
& \quad t_{0} \sqrt{ } \Leftrightarrow t_{1} \sqrt{ } .
\end{aligned}
$$

Bisimulation

$$
\begin{aligned}
& \forall_{\left(t_{0}, t_{1}\right) \in R} \\
& \quad t_{0} \xrightarrow[\rightarrow]{a} t_{0}^{\prime} \Rightarrow \exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{a} t_{1}^{\prime} \wedge t_{0}^{\prime} R t_{1}^{\prime} \text {, and vice versa, } \\
& \quad t_{0} \sqrt{ } \Leftrightarrow t_{1} \sqrt{ } .
\end{aligned}
$$

Bisimulation

$$
\begin{aligned}
& \forall_{\left(t_{0}, t_{1}\right) \in R} \\
& \quad \rightarrow t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow \exists_{t_{1}^{\prime} \in S} t_{1} \xrightarrow{a} t_{1}^{\prime} \wedge t_{0}^{\prime} R t_{1}^{\prime} \text {, and vice versa, } \\
& \quad \rightarrow t_{0} \sqrt{ } \Leftrightarrow t_{1} \sqrt{ } .
\end{aligned}
$$

Bisimulation

$$
\begin{aligned}
& \forall\left(t_{0}, t_{1}\right) \in R \\
& \quad t_{0} \xrightarrow{a} t_{0}^{\prime} \Rightarrow \exists_{t_{1}^{\prime} \in S} \quad t_{1} \xrightarrow{a} t_{1}^{\prime} \wedge t_{0}^{\prime} R t_{1}^{\prime} \text {, and vice versa, } \\
& \quad \rightarrow t_{0} \sqrt{ } \Leftrightarrow t_{1} \sqrt{ } .
\end{aligned}
$$

Exercises

2．3．2

2．3．9

2．3．10

