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Overview

Design Constraints
* Power, Area, Frequency, CMOS Scaling

Timing
e Timing Metrics, Paths, Variability and Delay

e Deterministic Timing Analysis (Static Timing Analysis)
* Models, Interconnect, Networks-on-Chip, Clock Distribution

o Statistical Timing Analysis
» Probability, Spatial Correlations, MAX function

e Design Flow
e Synthesis, Transformation, Definitions, Constrains
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Design Constraints
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After all of the high level synthesis,
what do we have?

e a set of operation units to implement (*, +, <, etc)
some memory to implement (registers, ...)

a controller to implement

connections between all of these, with multiplexers,
branch logic, etc.

a vague idea of time (cycles)
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Questions

« What objectives does a designer have?

 What causes delay on an IC?
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Where do we need to go?

Design of a real chip / block of a chip, ready for
fabrication

... optimized as best as you can

e Power (= battery life and heat)

e Area (= cost and yield)

* Clock frequency (constraint? higher is better?)

... functioning with the rest of the IC / PCB

... with all the nasty details sorted out (reset, test, power
distribution, clock distribution, EMC, 10 standards, etc)
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How do we get there?

 There is good software to help us

e But we always need to help it by specifying what we
want, especially by providing timing constraints!

« Unless we know what we are doing, the design
« may (will) not work

 may (will) use more power / area than necessary
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CMOS Power

* Probably your most important design parameter!
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CMOS Power

e CMOS has relatively low static dissipation

» Power dissipation was the reason that CMOS
technology won over bipolar and NMOS technology for
digital IC’s

o (Extremely) high clock frequencies increase dynamic
dissipation

e Low V; increases leakage

e Advanced IC design is a continuous struggle to contain
the power requirements!
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CMOS Power

Estimate
B Furnace: 2000 W, r=10cm => P =6 W/cm?
B Processor chip: 100 W, 3 cm? = P = 33 W/cm?

B Human brain: 20 W, ~1.3 dm3 = P =0.015 W/cm?3

]
TUDelft 13165




CMOS Power

e Dynamic Power Consumption
Charging and discharging capacitors
e Short Circuit Currents
Short circuit path between supply rails during switching
(NMOS and PMOS on together)
» Leakage
Leaking diodes and transistors
Important for battery-operated equipment
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CMOS Power

P~al(C, +Cus) Vg [Viop L +

a — switching activity
e C, - load capacitance = Ipc— static current
» C~— short-circuit capacitance - [, — leakage current
* Vying — VOItage swing
e f—frequency

o - _energy
operation

Xrate+ static power
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CMOS Leakage Power

B Sub-threshold current of MOS devices

i Vi I MWViema (1 — a~Vob Vinermal
| b (sub-threshoiay = KVVE 1-e )

1072
B No channel = parasitic 104 Hinear
bipolar device:
n+ (source) — p (bulk) — n+ Z10%  / Quadratic
(drain) =
108 /
101 E%ponenﬁal
1012 Vi | ‘
05 1 15 2 25
Vs (V)
%
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CMOS Short-Circuit Power

B Short-circuit current increases with
{ Vs, !+ This is clearly much larger on
average for small C, compared to
CLoad |VDS | Iarge CL'
; | . .

Vil | 418
'VTP.' .............. tilld - [Vos|
input )
waveform ‘
. ouputfr /1. outputfor
....... ......E..... arge : ; / Sma” CL
NMOS/; ...... .‘:.F.).M.&.)..S. ..... NMOS -~ x PMOS
Best to maintain approximately equal input/output slopes
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Area

« Bigger means more expensive, more chance of defects
during production

* $%%
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Clock frequency

Delay in a switch/wire dictated by physics on the chip
Big transistors: small R, high power

Big transistors: large C

More modern technology -> better transistors, more
resistive wires (but shorter distances)!
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CMOS Scali ng Moore’s Law

The number of transistors that can be
integrated on a single chip will double
every 12 months (later adjusted to 18
months)

Gordon Moore, co-founder of Intel
[Electronics, vol. 38, no. 8, 1965]
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CMOS Scaling

» Reduce price per function:

= Want to sell more functions (transistors) per chip for
the same money = better products

= Build same products cheaper, sell the same part for
less money = larger market

= Price of a transistor has to be reduced

e But also want to be faster, smaller, lower power
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CMOS Scaling

* Fixed Voltage Scaling
« most common model until 1990's
 only dimensions scale, voltages remain constant

e Full Scaling (Constant Electrical Field)
+ ideal model - dimensions and voltage scale together by
the same factor S

e General Scaling
» most realistic for today’s situation - voltages and
dimensions scale with different factors
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CMOS Scaling

Constant Field Scaling: S = U

Parameter Relation General Scaling
W, L, t., 1/S
Vo, Vi 1/U

Area / Device WL 1/S?
Coy 1/t S
Coate C, WL 1/S
| C,, WV 1/U
Current Density | / Area S?/U
R,, VI, 1
Intrinsic Delay Ron Cgate 1/S
Power / Device by V 1/U?
Power Density P/Area S?/U?
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Design Style Choice

‘ Digital Circuit Implementation Approaches |
I |
‘ Custom | ‘ Semicustom I
I |
‘ Cell-based | ‘ Array-based |
I Pre-wired

Standard Cells
Compiled Cells (FPGA'Ss)
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ASIC Design Advantages

Cost: lower unit costs

Speed: ASICs are faster than FPGAs
Power: ASICs consume less power
Complexity: bigger designs can fit
Can add analog / mixed circuit blocks

]
TUDelft 25| 65
e



ASIC Disadvantages

e Time-to-market: some large ASICs can take a year or
more to design

* Design Issues: all the dirty details (Floorplan, Signal
Integrity, power/clock distribution, EMC, DFT, etc)

e Expensive Tools: ASIC design tools are very expensive

« A design bug means re-fabrication...
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FPGA Designh Advantages

« Faster time-to-market: No layout, masks or other
manufacturing steps are needed for FPGA design.

No NRE (Non Recurring Expenses)

Simpler design cycle

Field Reprogrammable (bug fixes...)

Reusable for other design

FPGAs are good for prototyping and limited production
Generally FPGAs are used for lower speed, lower
complexity and lower volume designs
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FPGA Disadvantages

« Lower performance (10x)
e Higher power
e High cost / unit
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Xilinx FPGA Tool Flow

Craate Dasign

Simulate Deasign Improve

- - Impleameantaton
L * Results

Synthaswe Desgn

= '

Emer Constramts

B
Imolemant Desgn
- i
Analyze Implemantabon Rasults
e e——

v

Program Device
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Tool flow details

e Much of the tool flow is automatic

« But: timing constraints need to be specified!

* To be able to do this, you need to understand timing!
e sources of delay
 how it is measured / estimated
e how your constraints impact the tool outcome
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Questions

 How do you know your RTL design is correct?
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Questions

e RTL design is used in the logic design phase

e RTL description (usually) converted to a gate-level
description by a logic synthesis too

« The synthesis results are then used by placement and
routing tools to create a physical layout

« Logic simulation tools may use a design’s RTL
description to verify its correctness
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Estimating timing: simulation

« Before synthesis, VHDL simulation is free from timing
Issues

« After synthesis, delay can be added to the simulation

« Simulation is never a proof: it only shows what
happens for the few vectors you are simulating

e Even if simulation shows no problems, the chip may
not work for other inputs! N

« Simulating all transitions with N input bits requires 2
vectors!

e Internal memory (state) makes this (much) worse.
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Static Timing Analysis

 We need a method that guarantees that the chip will
always work.

 We may need to allow some level of inaccuracy
(pessimistic!) to make it computationally efficient.
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Overview

 Timing
 Timing Metrics, Paths, Variability and Delay
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D-Latch

3 Transparent 0 Opaque X
." state : state :
Clock
<—— | eading edge <—— Trailing edge
C
| | |
| | |
| | |
Dl : |
| | |
| | |
| | | Data
: : ! in
| | Stored value |
| | |
Data Data Qo .
. ——D Q p—>—— | |
input output : :
Clock , ) Data
, > C | t4 | out
input e o
; Clock period Tep '
to ts
(a) (b)
[Taskin, Kourtev & Friedman, The VLSI Handbook]
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D-Register

(more commonly known as D-Flip-Flop)

Clock period Tcp

) -
' I ' Clock
<«—— [atching edge
C —
| | |
| : |
D —4 : :
| | |
| | |
| [ H | Data
' ; : in
: Stored value : Stored value (' :
‘Data D Data Q : : I
input output “: | \
plock S C 7: : Data
input | ! | out
fo {4 f
(@) (b)
[Taskin, Kourtev & Friedman, The VLSI Handbook]
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Timing Metrics Reminder

A

o\ / \

- — . Register
A 4 su >< hold ’ I D Q l
> L E3 4 | A
. — g *CLK
4L>
0 X X DATA
STABLE :—
t., : setup time
toid : hold time
teq : delay from clock (edge) to Q (propagation delay)
tiogic  + Worst case propagation delay of logic
tq : I(Jesttcas_e p{_opadgaltio; delay T2 Eogic + Ty + T
contamination delay
T : clock period 1:holds tcdloqic + tcdreqister
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Example: How to reduce clock period

. log|a+Db]
"N
CLK > e II Pl log )EI—} Out
b»E_[’./ CLK
Tak >t

CLK plogic
t

+ €, + tc_q

= tp,add + tp,abs + 1

plogic p,log
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Example: How to reduce clock period

a —Pp §
x a §
CLK || ! e Our
b—pS CLK CLK > % —P I I E% —p| log § Out
Cf( Tclk > tc-q + tp,Iogic + tsu
Tp,logic = tp,add + tp,abs +tp,|og b CLK CLK CLK
] ] o i i
Non-pipelined Pipelined
CLK
Clock Period Adder Absolute Value Logarithm
1 a;+ b
2 a,t b, la, + b,
3 ay+ by |ay + &, log(|a, + b))
4 as+ by |as + b5 log(la, + by))
5 as + bs ey + by log(la; + bs))

Tclk > tc-q + max(tp,addl tp,absr tp,Iog) + tsu
Increase functional throughput
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Example: How to reduce clock period

* Pipelining: very popular/effective measure to increase functional
throughput and resource utilization

* At the cost of increased /atency

* All high performance microprocessors excessively use pipelining in
instruction fetch-decode-execute sequence

Bottom line: more flip-flops, greater timing design problems
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Slow Path Skew Constraint

T+8 One clock tick later
<< >
_/— clock _/—
1 t ) Data at R2 should be
max stable before clock
R1 R2 pulse is applied
L data i
Timing constraint (t; = interconnect delay) ‘
T+o=2t, .= tp gt ti+[tc-q,max+ ., Internal delay of
- {flip-flop
\
T2t...-0 |

Minimum Clock Period Determined by Maximum Delay between

—] Latches minus skew &
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Fast Path Skew Constraint

0 Same clock tick ]

R, Race between
L clock and data

O *thold <tcq,min *lcd,logic *1i

O <tmin =tcq,min *ted,logic tti ~thold

Maximum Clock Skew
Determined by Minimum Delay

p O+thold <tcq,min Ttcdlogic T between Latches




Setup and Hold

o If your design does not meet the setup timing constraints, it will
work at a lower clock frequency

e If your design does not meet hold timing constraints, it will not
work at any clock frequency!
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Timing Paths

» Four types of paths:

Combinational logic
Y Reg

Start point — s>

Reg

—> | | P>

End point
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Digital Circuit — Sequential Path

Data Path

/. DFF ‘I>"]_ DFF

Signal /
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Static Timing Analysis (STA)

Data Path

DFF ‘I>°]_ OFF

Signal /

Stage by stage delay calculation

Limited signal information is stored after each stage
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From Signal to

Voo

Voo / 24

ta’e/ay = tout' t;'n Slew = |t2_ t] |

Limited signal information is stored after each stage
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Digital Circuit — Delay

Nominal Input and Output Waveforms

Voltage (V)

0.2F

200 250

150
time (ps)

0 -
50 100

49 | 65
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Digital Circuit — Delay Variation

Input and Output Waveforms

]
TUDelft 50 | 65




Delay Variation

Input and Output Waveforms

B Delay is not deterministic
W Its distributions is PVT

0.8 dependent
<06 B So, there is a need of to
g handle this. Methods:

2 B Statistical STA
> 0.4F . B Corner-based
0.2r .
O_
0 50 100 150 200 250
time (ps)

51|65
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Digital Circuit — Delay PDF

Input and Output Waveforms
1+
T Supply
0.8" - Lp
F i Wp N\
06 In Out
S
£ Ln - -
> 04r _l Wn [:}L
02+ - -
0 50 100 150 200 250
time (ps)
52 | 65
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Statistical Moments

 Measure the appearance of a distribution

% 1010 pdf of Delay
1. Mean (M) — Location 8" ood%
i o oo
2. Variance (02) — Spread il & r
5r o
B4 ooo o
3. Skewness (y) — Symmetry , ) E
o)
2r o c’o
4. Kurtosis (k) — Flatness " %
(k) 1 f [ o,

20 25 30 35 40 45 50
Delay (ps)

Cm=—g>
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Statistical Delay

50% Signal Crossing Time Difference

Probability Variation of L

0.045
0.04
0.035
0.03
0.025
0.02
0.015

A,
K %,

.
s
*ey
o

Probability

e, T

40 50 60 70 80 90
L (nm)

1
400
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Statistical Slew

10/90 or 20/80 or 30/70 % Signal Crossing Time Difference

> Probability Variation of L
g D.045
A,
0.04 —
£ D.035
+ +

Probability

s
. 40 50 60 70 80 Q0
L (nm)
< .
%
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Variability Sources and their Time Scales

Supply/Package | Temperature — Manufacturing —
Modal Operation Wear-out

Signal Coupling

340

t 2 s

.

Vyafer Y [mm]

5 8 6 8 o

i
\VAVAVAVAVAV

-80 -60 -40 -20 20 40 60 B0
Wafer X [rm]
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Temperature Sensitivity

e Increasing temperature
 Reduces mobility Jle
* Reduces /7,

[, decreases with

increasing
temperature

temperature
/s increases with »
temperature =
9
8 90 nm NMOS
i
5 €
55
T4
3
2 NN
1 \\
00 10 20 30 40 50 60 70 80 90 100
Temp(°C)
%
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Thomas J. Watson Research Center

Increasing and inevitable parametric variability

Litho-induced variability Random dopant effects’ Oxide thickness

Interconnect CMP and RIE effects

*D. J. Frank et al, Symp. VLS! Tech., 1939

Statistical Techniques to Combat Variability and Achieve Robust Deslgn . SASIMI 2007 & 2007 IBM Corperation, do not copy without permission
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Process Variations

N Percentage of total
variation accounted for
40% - by within-die variation
§ 30% (device and
= interconnect)
S 20%
o
10% —
0% | | | | T >
250 180 130 90 65
Technology Node (nm)
[Courtesy: S. Nassif, IBM]
L (nm) 250 180 130 90 65 45
Vt(mV) 450 400 330 300 280 200
o-Vt (mV) 21 23 27 28 30 32
o-Vt/Vt 47% 58% 82% 93% 10.7% 16%
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Threshold Variations Most Important for Power

10000

1000

100

/

Mean Number of Dopant Atoms

10 | | | | | | | | | | |
1000 500 250 130 65 32

Technology Node (nm) [Courtesy: S. Borkar, Intel]

Decrease of random dopants in channel increases impact of variation on threshold voltage
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Device and Technology Innovations

» Power challenges introduced by nanometer MOS transistors can
be partially addressed by new device structures and better
materials

 Higher mobility
» Reduced leakage
» Better control

e However ...
» Most of these techniques provide only a one (two) technology
generation boost
» Need to accompanied by circuit and system |evel
methodologies
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Stochastic Process Variation in Deep-Submicron
CMOS: Circuits and Algorithms:
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Delay impact of variations

Parameter Delay Impact
BEOL metal -10% — +25%
(Metal mistrack, thin/thick wires)
Environmental +15 %
(Voltage islands, IR drop, temperature)
Device fatigue (NBTIL, hot electron effects) +10%
V,and T _device family tracking + 5%
(Can have multiple V, and T, device families)
Model/hardware uncertainty +5%
(Per cell type)
N/P mistrack +10%
(Fast rise/slow fall, fast fall/slow rise)
PLL +10%
(Jitter, duty cycle, phase error) [Courtesy Kerim Kalafala]
¢ Requires 220 timing runs or [-65%,+80%] guard band!
® Chandu Visweswarizh, 2004 Statistical Timing of Digital Integrated Circuits 5
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Handling Variations

» Variability is huge! [-65%, +80%] guard band.
e Corners: provide best (u—30), typical, worst (u+30) case values
« With nvarying parameters 3”7 corners (!)
« Simple calculations
 Pessimistic
o Statistical Analysis:
« Complex calculations (correlations!)
» Result hard to interpret
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Overview

» Design Constraints
* Power, Area, Frequency, CMOS Scaling

 Timing
 Timing Metrics, Paths, Variability and Delay
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