

Amir Zjajo, PhD

Research focus:

- Biomedical Interfaces/SoC
 - From sensors to sense-making: Signal acquisition, conditioning, quantization, detection, classification
- Neuromorphic Cognitive Systems (Hardware)
 - Brain-like systems with adaptation, self-organization, and learning
- Currently (co-)supervising 12 MSc students

Amir Zjajo, PhD

Contact:

- http://cas.et.tudelft.nl/~zjajo
- Office: Circuits and Systems Group EWI 17.270
- E-mail: a.zjajo@tudelft.nl

Acknowledgement

• Michel Berkelaar

Overview

- Design Constraints
 - Power, Area, Frequency, CMOS Scaling
- Timing
 - Timing Metrics, Paths, Variability and Delay
- Deterministic Timing Analysis (Static Timing Analysis)
 - Models, Interconnect, Networks-on-Chip, Clock Distribution
- Statistical Timing Analysis
 - Probability, Spatial Correlations, MAX function
- Design Flow
 - Synthesis, Transformation, Definitions, Constrains

Design Constraints

After all of the high level synthesis, what do we have?

- a set of operation units to implement (*, +, <, etc)
- some memory to implement (registers, ...)
- a controller to implement
- connections between all of these, with multiplexers, branch logic, etc.
- a vague idea of time (cycles)

Questions

- What objectives does a designer have?
- What causes delay on an IC?

Where do we need to go?

- Design of a real chip / block of a chip, ready for fabrication
- ... optimized as best as you can
 - Power (= battery life and heat)
 - Area (= cost and yield)
 - Clock frequency (constraint? higher is better?)
- ... functioning with the rest of the IC / PCB
- ... with all the nasty details sorted out (reset, test, power distribution, clock distribution, EMC, IO standards, etc)

How do we get there?

- There is good software to help us
- But we always need to help it by specifying what we want, especially by providing timing constraints!
- Unless we know what we are doing, the design
 - may (will) not work
 - may (will) use more power / area than necessary

• Probably your most important design parameter!

- CMOS has relatively low static dissipation
- Power dissipation was the reason that CMOS technology won over bipolar and NMOS technology for digital IC's
- (Extremely) high clock frequencies increase dynamic dissipation
- Low V_T increases leakage
- Advanced IC design is a continuous struggle to contain the power requirements!

Estimate

■ Furnace: ■ Processor chip: Human brain:

2000 W, r=10 cm \rightarrow P \approx 6 W/cm²

100 W, 3 cm² \rightarrow P \approx 33 W/cm² 20 W, ~1.3 dm³ \rightarrow P ~ 0.015 W/cm³

- Dynamic Power Consumption Charging and discharging capacitors
- Short Circuit Currents Short circuit path between supply rails during switching (NMOS and PMOS on together)
- Leakage
 - Leaking diodes and transistors
 - Important for battery-operated equipment

$$P \sim \alpha \cdot (C_L + C_{CS}) \cdot V_{swing} \cdot V_{DD} \cdot f + (I_{DC} + I_{Leak}) \cdot V_{DD}$$

 α – switching activity

- C_L load capacitance
- *C_{CS}* short-circuit capacitance

•
$$V_{swing}$$
 – voltage swing

• *f* – frequency

• I_{DC} – static current

•
$$I_{leak}$$
 – leakage current

$$P = \frac{energy}{operation} \times rate + static \ power$$

CMOS Leakage Power

Sub-threshold current of MOS devices

 $I_{D(sub-threshold)} \approx K_1 W e^{-V_T / nV_{thermal}} \left(1 - e^{-V_{DD} / V_{thermal}}\right)$

No channel → parasitic bipolar device: n+ (source) - p (bulk) - n+ (drain)

CMOS Short-Circuit Power

Best to maintain approximately equal input/output slopes

ŤUDelft

Area

- Bigger means more expensive, more chance of defects during production
- \$\$\$

Clock frequency

- Delay in a switch/wire dictated by physics on the chip
- Big transistors: small R, high power
- Big transistors: large C
- More modern technology -> better transistors, more resistive wires (but shorter distances)!

Moore's Law

The number of transistors that can be integrated on a single chip will double every 12 months (later adjusted to 18 months)

Gordon Moore, co-founder of Intel [Electronics, vol. 38, no. 8, 1965]

- Reduce price per function:
- Want to sell more functions (transistors) per chip for the same money → better products
- Build same products cheaper, sell the same part for less money → larger market
- Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

- Fixed Voltage Scaling
- most common model until 1990's
- only dimensions scale, voltages remain constant
- Full Scaling (Constant Electrical Field)
- ideal model dimensions and voltage scale together by the same factor S
- General Scaling
- most realistic for today's situation voltages and dimensions scale with different factors

Constant Field Scaling: S = U

Parameter	Relation	General Scaling
<i>W, L, t</i> _{ox}		1/S
V _{DD} , V _T		1/U
Area / Device	WL	1/S ²
C _{ox}	1/t _{ox}	S
C _{gate}	C _{ox} W L	1/S
I _{sat}	C _{ox} W V	1/U
Current Density	I _{sat} / Area	S²/U
R _{on}	V/I _{sat}	1
Intrinsic Delay	Ron Cgate	1/S
Power / Device	I _{sat} V	1/U²
Power Density	P/Area	S ² /U ²

ASIC Design Advantages

- Cost: lower unit costs
- Speed: ASICs are faster than FPGAs
- Power: ASICs consume less power
- Complexity: bigger designs can fit
- Can add analog / mixed circuit blocks

ASIC Disadvantages

- Time-to-market: some large ASICs can take a year or more to design
- Design Issues: all the dirty details (Floorplan, Signal Integrity, power/clock distribution, EMC, DFT, etc)
- Expensive Tools: ASIC design tools are very expensive
- A design bug means re-fabrication...

FPGA Design Advantages

- Faster time-to-market: No layout, masks or other manufacturing steps are needed for FPGA design.
- No NRE (Non Recurring Expenses)
- Simpler design cycle
- Field Reprogrammable (bug fixes...)
- Reusable for other design
- FPGAs are good for prototyping and limited production
- Generally FPGAs are used for lower speed, lower complexity and lower volume designs

FPGA Disadvantages

- Lower performance (10x)
- Higher power
- High cost / unit

Xilinx FPGA Tool Flow

TUDelft

X11040

Tool flow details

- Much of the tool flow is automatic
- But: timing constraints need to be specified!
- To be able to do this, you need to understand timing!
 - sources of delay
 - how it is measured / estimated
 - how your constraints impact the tool outcome

• How do you know your RTL design is correct?

Questions

- RTL design is used in the **logic** design phase
- RTL description (usually) converted to a gate-level description by a logic synthesis tool
- The synthesis results are then used by placement and routing tools to create a physical layout
- Logic simulation tools may use a design's RTL description to verify its correctness

Estimating timing: simulation

- Before synthesis, VHDL simulation is free from timing issues
- After synthesis, delay can be added to the simulation
- Simulation is never a proof: it only shows what happens for the few vectors you are simulating
- Even if simulation shows no problems, the chip may not work for other inputs!
- Simulating all transitions with N input bits requires 2 vectors!
- Internal memory (state) makes this (much) worse.

Static Timing Analysis

- We need a method that guarantees that the chip will always work.
- We may need to allow some level of inaccuracy (pessimistic!) to make it computationally efficient.

Overview

- Design Constraints
 - Power, Area, Frequency, CMOS Scaling
- Timing
 - Timing Metrics, Paths, Variability and Delay
- Deterministic Timing Analysis (Static Timing Analysis)
 - Models, Interconnect, Networks, Clock Distribution
- Statistical Timing Analysis
 - Probability, Spatial Correlations, MAX function
- Design Flow
 - Synthesis, Transformation, Definitions, Constrains

[Taskin, Kourtev & Friedman, The VLSI Handbook]

D-Register (more commonly known as D-Flip-Flop)

[Taskin, Kourtev & Friedman, The VLSI Handbook]

TUDelft

Example: How to reduce clock period

Example: How to reduce clock period

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$	2	
2	$a_2 + b_2$	$ a_1 + b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1 + b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2 + b_2)$
5	$a_5 + b_5$	$ a_4 + b_4 $	$\log(a_3+b_3)$

 $T_{clk} > t_{c-q} + max(t_{p,add}, t_{p,abs}, t_{p,log}) + t_{su}$

Increase functional throughput

Example: How to reduce clock period

- Pipelining: very popular/effective measure to increase functional throughput and resource utilization
- At the cost of increased *latency*
- All high performance microprocessors excessively use pipelining in instruction fetch-decode-execute sequence

Bottom line: more flip-flops, greater timing design problems

Slow Path Skew Constraint

Fast Path Skew Constraint

Setup and Hold

- If your design does not meet the setup timing constraints, it will work at a lower clock frequency
- If your design does not meet hold timing constraints, it will not work at any clock frequency!

Timing Paths

• Four types of paths:

Digital Circuit – Sequential Path

Static Timing Analysis (STA)

Limited signal information is stored after each stage

From Signal to

Limited signal information is stored after each stage

TUDelft

Digital Circuit – Delay Variation

TUDelft

TUDelft

Digital Circuit – Delay PDF

TUDelft

Statistical Moments

• Measure the appearance of a distribution

- 2. Variance (σ^2) Spread
- 3. Skewness (γ) Symmetry
- 4. Kurtosis (κ) Flatness

Statistical Delay

Statistical Slew

Variability Sources and their Time Scales Supply/Package Manufacturing Temperature – Signal Coupling Noise **Modal Operation** Wear-out 10-10-10-8 10-4-10-2 10-7-10-5 105-107 Vafer Y [mm] 0-50 600 800 Time (ps) 1000 1200 -20 0 20 40 60 80 Wafer X [mm] -80 -60 -40

56 | 65

Temperature Sensitivity

lon/loff

- Increasing temperature
 - Reduces mobility
 - Reduces V_{TH}
- *I_{ON}* decreases with temperature
- *I_{OFF}* increases with temperature

Thomas J. Watson Research Center

Increasing and inevitable parametric variability

Process Variations

TUDelft

Threshold Variations Most Important for Power

Decrease of random dopants in channel increases impact of variation on threshold voltage

TUDelft

Device and Technology Innovations

- Power challenges introduced by nanometer MOS transistors can be partially addressed by new device structures and better materials
 - Higher mobility
 - Reduced leakage
 - Better control
- However ...
 - Most of these techniques provide only a one (two) technology generation boost
 - Need to accompanied by circuit and system level methodologies

Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms

Recommended reading (free download via SpringerLink book <u>site</u> – through University subscription)

Delay impact of variations

Parameter	Delay Impact
BEOL metal	$-10\% \rightarrow +25\%$
(Metal mistrack, thin/thick wires)	
Environmental	±15 %
(Voltage islands, IR drop, temperature)	
Device fatigue (NBTI, hot electron effects)	±10%
$V_{\rm t}$ and $T_{\rm ox}$ device family tracking	±5%
(Can have multiple $V_{\rm t}$ and $T_{\rm ox}$ device families)	
Model/hardware uncertainty	±5%
(Per cell type)	
N/P mistrack	±10%
(Fast rise/slow fall, fast fall/slow rise)	
PLL	±10%
(Jitter, duty cycle, phase error)	[Courtesy Kerim Kalafala]

• Requires 2²⁰ timing runs or [-65%,+80%] guard band!

© Chandu Visweswariah, 2004

Statistical Timing of Digital Integrated Circuits

5

Handling Variations

- Variability is huge! [-65%, +80%] guard band.
- Corners: provide best (μ -3 σ), typical, worst (μ +3 σ) case values
 - With *n* varying parameters 3^{*n*} corners (!)
 - Simple calculations
 - Pessimistic
- Statistical Analysis:
 - Complex calculations (correlations!)
 - Result hard to interpret

Overview

- Design Constraints
 - Power, Area, Frequency, CMOS Scaling
- Timing
 - Timing Metrics, Paths, Variability and Delay
- Deterministic Timing Analysis (Static Timing Analysis)
 - Models, Interconnect, Networks, Clock Distribution
- Statistical Timing Analysis
 - Probability, Spatial Correlations, MAX function
- Design Flow
 - Synthesis, Transformation, Definitions, Constrains

