CT 4471 Drinking water 1

Softening

Dr.ir. J.Q.J.C. Verberk Room 2.98

1

Delft University of Technology

Contents

- 1. Introduction
- 2. Chemical aspects
- 3. Hydraulics of fluidised bed
- 4. Kinetics and mass balance
- 5. Model calculations of softening
- 6. Selection of chemical
- 7. Other aspects

Introduction

What is hard water?

What is hard water?

total hardness: $[Mg^{2+}] + [Ca^{2+}] = 1.5 \text{ mmol/l}$

	very soft	soft	fairly soft	fairly hard	hard	very hard
mmol/l	< 0.5	0.5 – 1.0	1.0 – 1.8	1.8 – 2.5	2.5 - 5	> 5
eq/m ³	< 1	1 - 2	2 – 3.5	3.5 – 5	5 - 10	>10
°D	< 3	3 - 6	- 10	10 - 15	15 - 25	>25

$$1^{\circ}D = 2.8 \text{ eq/m}^3$$
; 1 mmol/l = 2.0 eq/m³

Limburg:	
Veluwe:	
Delft:	

hard water soft water 1.5 – 1.7 mmol/l

kiwa

How hard is your water?

See website of you water supply company

Examples of scaling from daily experience

Why softening?

Public health

- reduced uptake of heavy metals (Pb, Cu, Zn) from pipe material
- no domestic softeners

Environment

- heavy metals (Cu) in sludge of WWTP's
- use of detergents and phosphate concentration in wastewater
- brine from domestic softeners

Economy

- detergent use
- scaling and corrosion of domestic devices
- energy consumption of heating devices
- destruction of clothing

Ethics

• prevention of stains

Softening methods

Formation of insoluble Ca- and Mg-ions:

- sludge process (USA)
- pellet softening

Exchange of Ca- (and Mg-)ions for Na-ions (ion exchange)

Removal of Ca- and Mg-ions by membrane filtration

Why pellet softening?

Waste product: production of a small amount of hard pellets

Water quality: effluent is almost at equilibrium pH value because of large specific surface area

Operation: minimal supervision, robust process

Costs: lower investment costs due to small volume low chemical costs due to high efficiency low costs for (carry-over) sludge treatment using Ca(OH)₂ no costs for sludge treatment using NaOH

Principle pellet softening

Fluidised bed

- large crystallisation surface
- rapid reaction
- compact installation
- high efficiency
- low costs
- no cementing of pellets

Crystallisation process

• pure, water free pellets

Water quality

рН	8 < pH < 8.3		
SI	-0.2 < SI < 0.3		

total hardness: $[Mg^{2+}] + [Ca^{2+}] = 1.5 \text{ mmol/l}$ (future 1.0 mmol/l)

HCO₃⁻ concentration: minimum 1.0 mmol/l preferable 2.0 mmol/l

Na⁺ concentration: < 5.2 mmol/l

Water quality

Cu- and Pb-solubility as low as possible

Pb²⁺ solubility: TAC

Cu²⁺ solubility : $0.52 \cdot TAC - 1.37 \cdot pH + 2 \cdot [SO_4^{2-}] + 10.2$ -141·pH + 12·T + 1135 $= \sum ([CO_3^{2}] + [HCO_3] + [CO_2])$

ÍUDelft

Softening in ground water treatment

Raw water

- + good removal of Fe and Mn
- high chemical consumption due to CO₂
- chaotic pellet structure (PO₄)

Aerated water

- + reasonable removal of Fe and Mn
- + coagulation of micro crystals by Fe
- increased dCa = super saturation

Clear water

- + pure pellets
- + no influence on existing treatment process
- filtration step needed for removal of micro crystals

Chemical aspects

See CT3011 and CT3420 for more information

Also chapters "Water quality" and "groundwater" of book "Drinking water - principles and practices"

Balance equations

Carbonic acid : CO_2 , HCO_3^{-} , CO_3^{2-}

The following reactions are important: $CO_2 + 2 \cdot H_2O < --> H_3O^+ + HCO_3^ K_1 = \frac{[H_3O^+] \cdot [HCO_3^-]}{[CO_2]}$ $K_1 (T=10^{\circ}C) = 3.44 \cdot 10^{-7}$

 $HCO_{3}^{-} + H_{2}O < --> H_{3}O^{+} + CO_{3}^{2-}$ $K_{2} = \frac{[H_{3}O^{+}] \cdot [CO_{3}^{2-}]}{[HCO_{3}^{-}]} K_{2} (T=10^{\circ}C) = 3.25 \cdot 10^{-11}$

% pH diagram for carbonic acid

pH for natural water is 7-8; thus mainly CO₂ en HCO₃⁻

Calcium - carbonic acid equilibrium

CaCO ₃	<>	$Ca^{2+} + CO_3^{2-}$	(K _s)
$CO_2 + 2 \cdot H_2O$	<>	$HCO_{3}^{-} + H_{3}O^{+}$	(K ₁)
$CO_3^{2-} + H_3O^+$	<>	$HCO_{3}^{-} + H_{2}O$	(K ₂ ⁻¹)
			+

 $CaCO_3 + CO_2 + H_2O$ <--> $Ca^{2+} + 2 \cdot HCO_3^{-}$

$$K_{a} = \frac{[Ca^{2+}] \cdot [HCO_{3}^{-}]^{2}}{[CO_{2}]} = K_{s} \cdot K_{1} \cdot K_{2}^{-1}$$
$$K_{a} = \frac{3,89 \cdot 10^{-9} \cdot 3,44 \cdot 10^{-7}}{3,25 \cdot 10^{-11}} = 4,11 \cdot 10^{-5}$$

Tillmans

 $CaCO_{3} + CO_{2} + H_{2}O \qquad < --> \qquad Ca^{2+} + 2 \cdot HCO_{3}^{-} \qquad \frac{[Ca^{2+}] \cdot [HCO_{3}^{-}]^{2}}{[CO_{2}]} = K_{a}$ at 10°C --> $K_{a} = 4.11 \cdot 10^{-5}$ $[HCO_{3}^{-}]^{3} = 2 \cdot K_{a} \cdot [CO_{2}]$ $[Ca^{2+}] = 1/2 \cdot [HCO_{3}^{-}]$

Above line: aggressive Underneath line: scaling

Tillmans curve

At 10°C 0.7 g/m³ CO_{2,equilibrium} = 0.016 mmol/l $[HCO_3^-] = (2.4.11.10^{-5}.1.6.10^{-5})^{0.33} = 0.0011 \text{ mol/l} = 1.1 \text{ mmol/l}$ $[Ca^{2+}] = 0.5 \cdot [HCO_3^-] = 0.55 \text{ mmol/l}$

Due to sub surface reduction processes, CO_2 concentration will increase to several tens of g/m³ --> higher hardness

TUDelft

Saturation index (SI)

Equilibrium equation calcium - carbonic acid

Tillmans $[Ca^{2+}] = 0.5 \cdot [HCO_3^{-}]$

1st dissociation equation for carbon dioxide

 $\frac{[\operatorname{Ca}^{2+}] \cdot [\operatorname{HCO}_3^{-}]^2}{[\operatorname{CO}_2]} = \mathrm{K}_a$

 $\frac{[H_3O^+]\cdot[HCO_3^-]}{[CO_2]} = K_1$

Combination of these equations results in $[H_3O^+] = \frac{[HCO_3^-]^2 \cdot K_2}{2 \cdot K_s}$ or in p-values:

 $pH_{s} = -2 \cdot \log[HCO_{3}^{-}] - pK_{2} + pK_{s} + \log(2)$

Saturation index (SI)

 $SI = pH - pH_s$

if SI < 0 agressive SI > 0 scaling

When the water is in equilibrium, SI = 0, or

$$SI = pH - pH_S = 0 \Rightarrow$$

 $pH+ 2 \cdot log[HCO_3^{-}] + pK_2 - pK_s - log(2) = 0$

Tillmans curve

Ca-pH relation in equilibrium (Tillmans conditions, $Ca=0.5*HCO_3^{-}$)

∕ T∪Delft

Stable pH in distribution system

TUDelft

Neutralisation reactions by dosing base

Dosing caustic soda NaOH NaOH + CO_2

Dosing lime $Ca(OH)_2$ $Ca(OH)_2 + 2 \cdot CO_2$

Dosing soda ash Na_2CO_3 $Na_2CO_3 + CO_2 + H_2O$ --> Na⁺ + HCO₃⁻

-->Ca²⁺ + 2·HCO₃⁻

--> 2·Na⁺ + 2·HCO₃⁻

Softening reactions by dosing base

Dosing caustic soda NaOH ---> Na+ + OH-NaOH $OH^{-} + HCO_{2}^{-}$ $--> CO_3^{2-} + H_2O$ $CO_{2^{2-}} + Ca^{2+}$ --> CaCO₃ ↓ $NaOH + Ca^{2+} + HCO_3^{-}$ $--> CaCO_3 + H_2O + Na^+$ Dosing lime Ca(OH)₂ $Ca(OH)_{2} + Ca^{2+} + 2 \cdot HCO_{3}^{-} = ->2 \cdot CaCO_{3} + 2 \cdot H_{2}O_{3}^{-}$ Dosing soda ash Na₂CO₃ $Na_{2}CO_{3} + Ca^{2+}$ $--> CaCO_3 + 2 \cdot Na^+$

Water composition change by dosing base

	NaOH	Ca(OH) ₂	Na ₂ CO ₃
Neutralisation			
CO ₂	-1	-2	-1
HCO ₃ -	1	2	2
Ca ²⁺	0	1	0
Na+	1	0	2
Softening			
CO ₂	0	0	0
HCO ₃ -	-1	-2	0
Ca ²⁺	-1	-1	-1
Na ⁺	1	0	2

Choice of chemicals, practice

″ T∪Delft

Softening with Tillmans curve dosing chemical

1 - 2 deacidifying
 2 - 3 softening

 $\begin{array}{c} Ca(OH)_2 + 2 \cdot CO_2 \xrightarrow{} Ca^{2+} + 2 \cdot HCO_3^{-} \\ Ca^{2+} + 2 \cdot HCO_3^{-} \xrightarrow{} CaCO_3 + CO_2 + H_2O \end{array}$

Example neutralisation and softening with lime

Raw water composition $[Ca^{2+}] = 3,0 \text{ mmol/l}$ $[Mg^{2+}] = 0,5 \text{ mmol/l}$ TH = 3,5 mmol/l $[HCO_3^{-1}] = 6 \text{ mmol/l}$ $[CO_2] = 2 \text{ mmol/l}$ $[Na^+] = 3 \text{ mmol/l}$ preferred TH = 1,5 mmol/ldosing lime Ca(OH)₂ neutralisation $2 \cdot CO_2 + Ca(OH)_2 -> 2 \cdot HCO_3 + Ca^{2+}$ needed: 1 mmol/l Ca(OH)₂ result: $[HCO_3^{-}] = 8 \text{ mmol/l}; [Ca^{2+}] = 4.0 \text{ mmol/l}$ $Ca(OH_{2}) + Ca^{2+} + 2 \cdot HCO_{3}^{-} - > 2 \cdot CaCO_{3} + 2 \cdot H_{2}O$ softening needed: 3 mmol Ca(OH)₂

result: $[HCO_3^-]=2 \text{ mmol/l}; [Ca^{2+}]=1.0 \text{ mmol/l}; [CaCO_3]=6 \text{ mmol/l}$

Hydraulics of fluidised bed

Hydraulics of fluidised bed

Head loss

$$H = 130 \cdot \frac{v^{0.8}}{g} \cdot \frac{(1-p)^{1.8}}{p^3} \cdot \frac{v^{1.2}}{d^{1.8}} \cdot L$$
$$H_{max} = (1-p) \cdot L_0 \cdot \frac{\rho_p - \rho_w}{\rho_w}$$

p = porosity [-]d = diameter pellet [m] L₀ = height fixed bed [m] ρ_w = density water [kg/m³] v = upward velocity [m/s]

 ρ_p = density pellets [kg/m³]

Porosity
$$\frac{p}{(1-p)^{0.8}} = 130 \cdot \frac{v^{0.8}}{g} \cdot \frac{\rho_W}{\rho_p - \rho_W} \cdot \frac{v^{1.2}}{d^{1.8}}$$

Bed expansion

Delft

Porosity

Bed expansion

Specific surface

TUDelft

Kinetics and mass balance

Crystallisation kinetics

Kinetic equilibrium

$$-\frac{dCa^{2+}}{dt} = k \cdot S \cdot \left\{ \left[Ca^{2+} \right] \cdot \left[CO_3^{2-} \right] - K_s \right\}$$

Parameters1. Super saturation $[Ca^{2+}] \cdot [CO_3^{2-}] - K_s = K_s \cdot (10^{-SI} - 1)$ 2. Specific surface $\mathbf{S} = \mathbf{6} \cdot \frac{(1-p)}{d}$ 3. Reaction constantk = f(T)

Mass balance

$$\begin{split} \Delta \mathbf{d} &= \mathbf{f}(\Delta \mathbf{C}) \\ \mathbf{N}_{k} \cdot \frac{\pi}{6} \cdot \left(\mathbf{d}_{2}^{3} - \mathbf{d}_{1}^{3} \right) \cdot \mathbf{\rho}_{p} = \left(\left[\mathbf{Ca} \right]_{1} - \left[\mathbf{Ca} \right]_{2} \right) \cdot \mathbf{M} \cdot \mathbf{Q} \end{split}$$

- 1. Equilibrium
- 2. Kinetics
- 3. Mass balance

$$Ca^{2+} = c_{s} = \frac{K_{s}}{[CO_{3}^{2-}]}$$
$$-\frac{dc}{dt} = k \cdot S \cdot \left\{ \begin{bmatrix} CO_{3}^{2-} \end{bmatrix} \cdot \begin{bmatrix} CO_{3}^{2-} \end{bmatrix} - K_{s} \right\}$$
$$\Delta d = f(\Delta c)$$

Model calculations and softening

Reference calculation

Raw water composition:

Softened water composition:

Reactor settings:

$Ca_1 =$ TAC =	3.5 mmol/l 5.0 mmol/l
пс0 ₃ =	
1 =	
1 =	12.1 mmol/
$Ca_2 =$	1.5 mmol/l
dCa =	0.06 mmol/
V =	80 m/h
d ₁ =	0.3 mm
$\rho_1 =$	2650 kg/m ³
$d_2 =$	1.0 mm
$\rho_{p} =$	2840 kg/m ³

Reference calculation

″ T∪Delft

Influence variables on reactor height

Reference conditions Variable conditions

 $T = 10^{\circ}C$ v = 80 m/h $d_2 = 1.0 \text{ mm}$ $d_1 = 0.3 \text{ mm}$ $\rho_{\rm p} = 2,650 \text{ kg/m}^3$ dCa = 0.06 mmol/l $Ca_2 = 1.50 \text{ mmol/l}$

 $T = 5^{\circ}C$ v = 120 m/h $d_2 = 0.75 \text{ mm}$ $d_1 = 0.2 \text{ mm}$ $\rho_{\rm p} = 4,200 \text{ kg/m}^3$ dCa = 0.10 mmol/l $Ca_2 = 1.00 \text{ mmol/l}$

 $L_{o} = 6.73 \text{ m}$ $L_{o} = 10.9 \text{ m}$ $L_{a} = 5.39 \text{ m}$ $L_{p} = 5.58 \text{ m}$ $L_{e} = 4.55 \text{ m}$ $L_{e} = 2.78 \text{ m}$ $L_{e} = 3.12 \text{ m}$

 $L_{e} = 5.43 \text{ m}$

Influence variables

increase	influence on				
of	L _e	dos	N _k	S	Si _{max}
Т	<<	<	-	>	<
V	>>	-	-	<<	-
d_2	>	-	<<	<<	-
d ₁	<>	-	>>	<	-
ρ ₁	<	-	>>	>	-
Ca ₁	<<	>	-	-	>
Ca ₂	<>	<<	<<	-	<<
Size of					
Ca(OH) ₂	>>	-	-	-	<<

Split treatment

Advantages:
1. lower chemical consumption

dCa is less
no chemicals in split treatment flow (CO₂)

2. mixed water approaches equilibrium
3. lower loading on filters
4. Lower cost due to less reactors/reactor area

 Mg^{2+} concentration no too high Max depth of Ca²⁺ softening = 0.5 mmol/l

Selection of chemical

Choice of chemicals

Chemicals: NaOH = caustic soda $Ca(OH)_2 = lime$ $NA_2CO_3 = soda ash$ Water quality total hardness: HCO_3^{-} -concentration:

Na⁺-concentration: < 5.2 m Copper and lead solubility as low as possible Operation

1.5 mmol/l minimum 1.0 mmol/l preferred 2.0 mmol/l < 5.2 mmol/l

Dosing of lime

Causes of carry-over (presence of sludge particles in effluent of reactor) Contamination of lime 1. CaCO₃ of lime preparation 2. - CO₂-assimilation of air - HCO₃⁻ of lime make-up water Non-dissolved lime parts 3. - hydrated lime 10 mm? - quick lime 5 mm? - SST 2 mm? Homogenous nucleation (spontaneous precipitation, not on 4. seeding grains) and pellet erosion

Dosing of lime

Dosing of caustic soda

wide range of use

low production of pellets

simple operation, simple dosing (50% solution in tanker, 25% solution in storage)

softening with NaOH and Ca(OH)₂

Other aspects

Dutch practice

installation	chemical	velocity	Lo	dTH
		(m/h)	(m)	(mmol/l)
Scheveningen	Ca(OH) ₂	100	3.0	1.0 - 1.5
Seppe	Ca(OH) ₂	80	3.5	1.0
Wijk aan Zee	NaOH	90	2.0	0.9
Hendrik Ido A.	NaOH	100	2.0	0.9
Leiduin	NaOH	100	2.0	0.85 - 1.1
Noord Bergum	Ca(OH) ₂	100	3.5	1.0

Bed height = 2.0 - 3.5 m Expanded bed height = 6 - 8 m

Reactors design

Amsterdam reactor

Bottom Amsterdam reactor

Top view of Amsterdam reactor

Seeding grain storage

Pellet storage

Tangential inlet at Woerden reactor

