Hydrological Measurements
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CEI 4440 Soil Hydrology

Set up of lecture today

Measuring soil moisture
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Soil moisture content
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Relatively cheap

Method Advantages Disadvantages
Gravimetric Easy Destructive
Whole range Laborious
Electric Reproducible Calibration needed
resistance In situ Sensitive contact soil — electrode
cheap Influence salt content
Hysteresis
Installation disturbance
TDR Reproducible Sensitive equipment
In situ Very expensive
Very accurate Influence salt content
Calibration not always needed Installation disturbance
FDR / Reproducible Influence salt content
Capacitance | Insitu More soil depending calibration then TDR
Accurate Installation disturbance

Less accurate near saturation




Observing moisture content in the lab

Gravitational measurements

« Measure the sample weight m,,

- Saturate the sample and measure the weight m,

« dry 24 hoursintheovenat105°C = :
4 Organic soils: dry 48 hours in the oven at 70 °C

* Measure the sample weight again: m,

« |If Vis the volume of the sample container:
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Observing moisture content in the field

Electrical resistance

Porous block

Embedded
electrodes

Leads to electrical resistance meter

Fig. 6.1. An electrical resistance block. The embedded electrodes may be plates, screens, or
wires in a parallel or concentric arrangement.

Must be calibrated gravimetrically
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Observing moisture content in the field

Freguency-Domain Reflectometry (FDR)

Measuring the dielectric constant of the solil by
gauging the electromagnetic field by sending
radio waves.

Measures impedance of capacitor formed by
rod and soil. This gives relative permittivity.

Due to relative low frequencies (20-70 MHz)
more solil specific calibration
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Observing moisture content in the field

Time-Domain Reflectometry (TDR)

Measuring the propagation time of an
electromagnetic wave along the pins.

Propagation velocity depends on
permittivity.

Reading-out several probs Arrival time and wave shape can be
connected in the multiplexer-box. an alys ed ]

Source uknown

Every “nest” needs a
separate cable tester

]
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TDR equipment (travel time electrical wave)

CHAPTER 6 WATER CONTENT AND POTENTIAL

TDR Cable Tester 2 EM%t
[Tektmnix 15(]25] onnector o Balun Tran?irr?éss;on
unit —
Length L
A
»| TDR
S | pulse
>
P
Time

Fig. 6.4. The essential components of a TDR system (above) and an idealized TDR output

= -
trace (obtainable with an oscilloscope) showing how the propagation time is determined. (After

& = ﬂ,-‘&

o A, =ty

Topp and Davis, 1985.)

Fig. 1-9: Diagram of a TDR cable tester.
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Trivento reference site

TDR equipment (travel time electrical wave)

tree 12

TDR soil moisture pits
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Soil moisture content

Non-destructive methods
= GPR

= Neutron probe

= Gamma logging

= Remote sensing
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Observing moisture content in the field
Ground penetrating radar (GPR)

Huisman et al.
Vadose Zone Journal, 2003.

Air Wave

Air

d

Tx
\_ Critically Ground Wave
Refracted
Wave
E-1 } 82

Refracted Wave

Fig. 3. Propagation paths of electromagnetic waves in a soil with

two layers of contrasting dielectric permittivity (¢, and ;) (after
DN e, 100 I



Observing moisture content in the field

Ground penetrating radar (GPR): multi-point methods
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Fig. 10. Calibration equation between gravimetrically determined soil
water content (SWC) and refractive index (ny, ) determined from

o
=
z the ground wave velocity obtained with 225-MHz ground penetrat
[ “ ing radar (GPR) antennas.
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Huisman et al.
Vadose Zone Journal, 2003.




Observing moisture content in the field

Ground penetrating radar (GPR): results
GPR TDR
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Advantage GPR: quick to map larger areas; relatively accurate estimate: stdv 2-3 %.

Disadvantage: Large initial investment; lower resolution; not continuous in time.
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Observing moisture content in the field
Neutron soil moisture measurements

Scaler

Cable

Shield and
standard T

LA

e
Hl  Radiative source

%

Prob 7
obe ~— Active zone

Access
tube

Fig. 6.2. Components of a portable neutron soil-moisture meter, including a probe (with
a source of fast neutrons and a detector of slow neutrons) lowered from a shield containing
hydrogenous material (e.g., paraffin, polyethylene) into the soil via an access tube. A scaler-rate
meter is shown alongside the probe. Recent models incorporate the scaler into the shield body,
and the integrated unit is lightweight for easy portability.
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http://www.lboro.ac.uk/departments/gy/tadpole/npread.jpg

Observing moisture content in the field
Gamma ray soil moisture measurements

’— Pulse height m
‘ (nalyz] Scaler

I Y I Ko
Soil surface 000 o © O'

IJ Preamplifier

Photomultiplier

137 __»m )
Cs source I_I‘ Scintillation
crystal

Parallel

access
T tubes —

Fig. 6.3. Double-probe gamma-ray apparatus for monitoring soil moisture or density.
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Measurements in general

Macropores are seldom measured because of the size of the pores
with respect to the size of the sample (this may cause
measurement results to be unreliable)

Continuous in-situ measurements of the moisture content give
direct results and thus the temporal variability, but are expensive
and quite vulnerable

Destructive measurements of the moisture content give a good
impression of the spatial variability, but are laborious; the methods
are cheap and robust

FDR: this is a good alternative: quick, not destructive, but with a
larger uncertainty

]
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CEI 4440 Soil Hydrology

Set up of lecture today

2. Hydrostatics; Measuring soil tension
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Hydrostatics

= Study of the forces in the soil-water system when
there is static equilibrium

= All forces are in equilibrium and there is no water
movement: the fluxes (rates) in the soil are zero;
the moisture content (state) does not change

=« PS: The moisture content differs at different depths
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Forces in the soil

m GraVity
= Capillary forces
= Adsorption

gt
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Adsorption

= Macroscopic: absorption of water vapour throughout
the soil

= Microscopic: electrical attraction beween positively
charged water particles and negatively charged soil
particles (electrical double layer of clay)

= Adsorption of water (water does not flow; this water
is only loosened by heating)

= Residual water content 6,
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Capillary forces

= Contact plane between soil, water and air

= Surface tension provides meniscus and
contact angle a between water and solid

= Capillary rise in pores: the smaller the pores
the larger the capillary rise and capillary

binding
L,

\_/I
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Capillary rise

Capillary rise depends on the radius r of the
pore:
|z =2ycosa/(pgr)

where Y = surface tension between water-air
(= 0.07 N/m)

z=05m

r=(2ycosa)/(pgz) =2*0.07/(1000*10*0.5) = 28 um
when taking the contact angle of water to approximate 0°

a) to empty the pore 0.5 m suction is needed
b) a pore with a radius of 28 um can suck up water till 0.5 m
c) this pore can hold water against suctions of 0.5 m and lower
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Specific surface

The contact surface between solid matter and water in
a soil depends on the type of material:

=« fine sand 1.2 m?/g

« silt 0.2 m?/g

= loam 25-80 m2/g

=« kaolinite 4-10 m2/g

= montmorillonite 150-500 m?/g

Capillary binding strongly depends on the type of
material: shape and size of the pores and the size

SRS SR E——
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Pressure in a glass of water, plane of reference soil,

hydrostatic equilibrium

Patm

l

0.5m

Water
pIRssure

Gravity

post
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In filled capillary: pressure is negative !

oo Josm

Water Gravity
Patm pressure

-0.5m 0 +0.5m
TU Delft



Potentials in the unsaturated zone

All potentials:

Or = Om T Q@gt Qa + Qe + Qo

« Matric potential (capillary binding)

« Gravitational potential

« Pneumatic potential (trapped air)

« Envelope potential (external load)

« Osmotic potential (difference in concentration)
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Important are.

0= Oy T+ Pg

» Hydraulic potential (¢y)
« Matric or pressure potential (¢,,)
« Gravitational potential ((Pg)
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The pressures are in static equilibrium:

Pt= Pm + (Pg
P + pgz = constant
p = density water (1000 kg/m?3)
g = gravitational acceleration (~10 m/s?,N/kg)

z = place with respect to plane of reference (m)
p = pressure (Pa=N/m?2)

T
5
TUDelft



Potential

on the basis of mass (kg)

- J/ka

on the basis of volume (m3)
« J/m3 = N.m/m3 = N/m? = Pa (pressure)

on the basis of weight (N)
« J/N =N.m/N = m (length)

T
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Mostly we use length as unit
*QPg /9 =z (M)
‘O /g = h (M)

H=h+z
hydraulic head = pressure head + elevation head

Equivalent:
hydraulic potential = matric potential + gravitational potential
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Conversion between units is easy:

« mass: @ = 1.0 J/kg
« volume: p @ = 1.0 kPa (factor 1.0)
« weight: ¢ /g = 1.0/10 = 0.1 m (factor 0.1)
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hydrostatic equilibrium: plane of reference groundwater
h = 0 at boundary atm/water, z = 0 at plane of ref.; H = Om

-0.3m

]
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hydrostatic equilibrium: plane of reference soil surface

h = 0 at boundary atm/water, z = 0 at plane of ref.; H=-1m

-1.0m 0 +1.0m
HI\n /lz
Uz |
SRS — -1.0m
GW
-1.3m
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Above the water table part of the pores is saturated even if
h < 0: capillary zone

Potential Moisture content

]
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Static equilibrium: H = h+z = constant

« the matric potential is positive (+) below the
water table

« the matric potential is negative (-) between the
water table and the soil surface

« gravitational potential is 0 at plane of reference,
1:1 linear and positive in an upward direction;
1:1 linear and negative in a downward direction

]
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Observing water potential

Pressure head

saturated

piezometer

YT
E ¥ oy
e

z=0

h

unsaturated

tensiometer

porous cup
S ———— " |

..........
...........

..........
............

-
......
-----------

reference level

Fig. 4.1: Diagram of relationship between hydraulic head, H, pressure head, h,
and gravitational head, z, for a piezometer (4) and a tensiometer (B).

Dirksen, 1999
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Observing water potential

Pressure head = Matric head : tensiometer

Max reading: pF=3 (¢ =-10 m) | e
T
)
4— Vacuum A —HERMETICALLY
gauge ! A SaveE
",
| %
\ w
|
:% THE
ﬁff TENSIOMETER
7 800Y
% .
7
.
ic cup 7
® .
Schematic diagram 7
of a tensiometer ’ . . CERAMIC
v
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Observing water potential

Example:
The pressure at level B is:

Pg = Pa+ p 9 (z,+2))

The pressure head is consequently:

h =h,+2z,+ 2z

z, =30 cm

Z, = 65cm

when -1.1m is read then the pressure in the cup is -
1.1 + 0.95 =-0.15m

This is the pressure head or matric head

]
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Observing water potential

Given: -0.9m pressure for both tensiometers;

there is static equilibrium. Determine the
potential diagram and depth of the water
table.

h, = -0.9+0.8 = -0.1m
h, = -0.9+1.0 = +0.1m (!)

H = h+z

H, =-0.1-0.6 =-0.7m

H, = +0.1- 0.8 = -0.7m

Water table: h = 0:

H=-0.7=2z+0 => at-0.7m depth

]
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CEI 4440 Soil Hydrology

Set up of lecture today

3. Soil hydraulics; pF curves
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Now what is the moisture content in the profile ?

We know:
« Pore-size distribution depends on type of soil

« Capillary binding is larger as diameter of pores is
smaller

« There is more pressure (potential) needed to empty
pores when they are smaller

« Adsorptive water is strongly bound

T
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Heterogeneous soil

Closed pores

Adsorption - v

Capillary forces

]
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pPF curve (soil moisture retention curve)

-1.E+08

-1.E+07
pF =log(-h)

(h in Cm) -1.E+06-

-1.E+05

-1.E+041

-1.E+03

-1.E+02

/ -1.E+01

-1.E+00

In soil profile
SO'I_ surface: h =-100 cm 0O 01 02 03 04 05 06
moisture content = 0.31 cm3/cm3 0 0
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pF curve (soil moisture retention curve)

— Clayey soll 1.E+08-
many small pores
water is liberated 1'E7+0 |
Gradually 1 E+06 1
—— Sandy soil LE+05
large pores 1 E+04-
water is liberated
Suddenly 1.E+031
_ _ 1.E+02
— Loamy soil (silt)
mixed pores LE+017
g(?od retenthn capacity 1 E+00 | | | | ,
mixed behaviour o 01 02 03 04 05 06
er eS
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Determining soil physical parameters:
standard laboratory

pF-curve (soil water retention curve; draining part)

pF: 0-2.0: sandbox method

pF 2.0-2.7: sandbox with kaolinite clay

o

\sFine well
orted sand

¥ (m)

Tube with
water

—
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Determining soil physical parameters:
standard laboratory

pF: 2.7-4.2: membrane pressure apparatus

pF:. 6 ~air dry

]
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Moisture profile with groundwater at 1 meter depth
hydrostatic equilibrium: the shape of a pF curve

+1.0m
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Difference potential and soil moisture in soil hydrology
Hydrostatic equilibrium but discontinuity in soil moisture content !

potential moisture content

]
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Plant available moisture

The pF curve can be used to calculate the available soil moisture for plants

« Plants can - on average - produce a suction till 16 x atmospheric
pressure: matric potential h = -16000 cm. This is pF 4.2, the wilting
point of a plant

« The soil is often at field capacity. This is the matric potential in the root
zone when the soil is in static equilibrium with gravity forces. If the
depth to the water table is moderately deep or unknown: h = -100 cm
= pF 2 is taken as field capacity
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Plant available moisture

Moisture between pF2 and
pF 4.2 is available for plants.

A conservative estimate,
because when the soil is wetter
than field capacity, this water is
also available, but not for a long
time; this water
drains/percolates relatively fast.

-1.E+08

-1.E+07-

-1.E+06

-1.E+05-

In cm)

= _1.E+04]

(h

-1.E+03-

-1.E+02—

-1.E+01-

-1.E+00
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Plant available moisture

Moisture content between -1.E+08
pF2 and pF 4.2 eror
differs per soil '
-1.E+06
A sandy soil has farless =
Ny SOl & 1 E+05. sand
available moisture o
i - I
than a clayey soll = Evos .
L |
N’ |
This is important for -1.E+03 i
agriculture: what crops can i lay
be grown, how much water SR TT T T T T T .
: . . |
IS n_eeded to irrigate and 1 E+01 i .
drain? i I
|
-1.E+00 : T T ! T |

8r % 8s
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Air-entry value

Water rises in a capillary till equilibrium is reached between
adhesive forces and the gravity

This level z is the air-entry value

e

Only when h < h, the pore empties

->

is used in different
formulas to describe
pF curves




Air-entry value

1.E+08
1.E+07 - _ _
Theoretically the air-
1.E+06 - entry value is
present in the pF
1.E+05 - _ o
curve, but in practice it
1.E+04 - is very difficult to
determine it because of
1E+03 the heterogeneous
character of soils
1.E+02 -
1.E+01
Air-entry potential
1.E+00
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CEI 4440 Soil Hydrology

Set up of lecture today

4. Soil infiltration and field tests

T
5
TUDelft



Infiltration

The saturated hydraulic conductivity k. can be determined by measuring the
flux Q using the below experimental setup. Suppose that the flux Q = 1.4
cm3/min and the surface area = 20 cm?

Calculation:

g =Q/A=-1.4/20 =
-0.07 cm/min

dH/dz = dh/dz+dz/dz =
1/5+5/5=1.2

K, = -(q/(dH/dz)) =
-(-0.07/1.2) = 0.058
cm/min

]
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Infiltration

CALCULATED FOR
64 MINUTES

| 64 min

e0r

Measured and modelled soil
water content distribution
during vertical infiltration
experiment into a vertical
column of air-dry silt loam soil.

fcr)

()
=
T

P
=
T

ﬂ_
CALCULATED FOR g4
226 MINUTES

SOIL DEPTH

162 min

50F _ _ —— "

Why is it taking more sof
time for the infiltration csteviaren ron -
front to do 50 to 75 cm 7Of  aer MwTES

compared to 0 to 25 cm? e

241 min

00 01 02 03 04 05

WATER CONTENT (e em™)  pavidson et al., 1963
Brutsaert, 2005
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Infiltration rate and infiltration capacity

Infiltration rate = volume flux of
water flowing into the soil per

/ Decreasing infiltrability
unit of soil surface area;

Infiltrability ——

Steady infiltrability

infiltrability = infiltration capacity
= maximum infiltration rate of Time ==
a soil at atmospheric pressure
and a certain antecedent
moisture condition

Cumulative infiltrability —

Time ——

]
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Double ring infiltrometer

- 40 cm

>

Rate of infiltration only

Water level 30 cm
in both cylinders "\<
kept at about2 cm e

water tends
into dry soil as well as downwards

>|/Iﬁsured ininner cylinder

www.eoearth.org

]
TU Delft




Infiltration

Infiltration is the process of downward entry
of water into the soil surface (ISSS, 1996).

Measurements:

* Sprinkler installations (‘rain’)
* Infiltrometres (several types)
* Ksat-tests and pF-curves

Examples of infiltration models:
* Green & Ampt (= Darcy’s law)

* Horton

* Philip

* A lot more .........



Double ring infiltrometer

The outer ring is too small ... but any shape will do
compared to the inner ring
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Drip plates

Sprinkler infiltration test
Nozzle type / spray

avL
h, G-
5 4
.
/




Interchangeable
______ calibrated
water reservoir

Air inlet

Stainless
steel mesh

Membrane
retaining
band

\ Silicone
¢ (’ sedlunt

\

\ Supply membrane \ Air exit

Fig. 7.9: Tension disc infiltrometer. Arrows show direction of air flow.

Dirksen, 1999 Note: hy = -z; + z,
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(Empirical) infiltration models

= Kostiakov model f = Kkt_“
(purely empirical, needs fitting data) P
= Horton model f =f +(f —f )e "'
(Only for Horton conditions, i>f, also P ¢ 0 ¢
needs fitting)
= Holtan model AN
f=aF) +1

(Land use important, use of
database/tables, more physical)

= Philip model

(series solution of Richards equation)

f :%St_% +A

T
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CEI 4440 Soil Hydrology

Set up of lecture today

5. Soil hydraulics; Permeability
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Darcy’s law (Darcy-Buckingham Equation)

dH
1D: q=-K(h)—— (Hz Vm +z=h+zj
dz PuY
g :—K(h){@+l}
dz
CoH )
3D isotropic: q=—K(h) oH =—-K(h)VH
oy
oH
\. OZ J
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Determining soil physical parameters:
standard laboratory

Saturated hydraulic conductivity: two experiments

_ L
K= ="
AAH K. =
Generally: K, < K ?? A(
T




Unsaturated hydraulic conductivity

ol

The conductivity is strongly dependent on the moisture
content (or matric potential)

The drier the soil the smaller the conductivity, because
“sma | UpON drying the larger pores are emptied first:

« water is binded stronger and it experiences more
friction in smaller pores;

« the film of water along the soil particles becomes
interrupted

| The conductivity is the highest at saturation (A7)

With unsaturated flow the conductivity is a function of
the moisture content or the matric potential:

K (&) orK(h)

T
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Unsaturated hydraulic conductivity

An experiment:

Porous plate |« AX ‘l Porous plate

C
x H,
= Y
T — — 00—
AH Constant e
L l level reservoir
A

Suction gradient (AH/AX)

0 0T/

1 LiLLl

L4

< Volumetric container .
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Unsaturated hydraulic conductivity

Unsaturated conductivity

of two soils

Q: Explain why the curves look
like that?

Ks1

x
w
R

Hydraulic conductivity

‘fff/f/,-SandysoH

/ Clayey soil

Suction

]
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Unsaturated hydraulic conductivity: models

Two approaches:
« Physical: Hagen-Poisseuille + pore size distribution (SWRC)

- Empirical approaches Gardner: K(h)

Gardner: K(6) K(hy=alh|" h<0
K(@)=a0" K(h)=—2— h<0
0_0 m b-l—‘h‘
K@) =K | —=
0 SLH—HJ K(h) = — s h<h

1+(h/h,) ]
Clapp and Hornberger K(h)=explc(h-h,)] h<h,
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Unsaturated hydraulic conductivity: models

Physical: Hagen-Poiseuille + pore size distribution (SWRC)

r pwg AH

v(r) =

PRESSURE HEAD h
r

SOIL WATER
CONTENT 0

Figure 4.19. Model of SWRC consisting of parallel capillary tubes (left) and the
resulting SWRC (right).
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Unsaturated hydraulic conductivity: models

Physical: Hagen-Poiseuille + pore size distribution (SWRC)

_ P9
8 u

q(r) =+ Jv(ryf(rydr
4 0

unit gradient : g(r) = K(r):

a

PRESSURE HEAD h

SOIL WATER
CONTENT 6

K(r) :%j'arzf(r)dr

Figure 4.19. Model of SWRC consisting of parallel capillary tubes (left) and the
resulting SWRC (right).
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Unsaturated hydraulic conductivity: models

Physical: Hagen-Poiseuille + pore size distribution (SWRC)

K(r) =%jar2f(r)dr

with f (r)dr = ds (s:j % and r:ﬁ):

1y a
K(S):;lhz(s) ds

T
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Unsaturated hydraulic conductivity: models

Physical: Hagen-Poiseulille + pore size distribution (SWRC)

21 ds/i 21 ds
s) / oh°(s)

with [z, /7(s)] ="

K. (s)=K(s)/K, =s" j

Mualem (1976) (b =0.5)+ change micro — macro :

K,(s)=s" [ h(s) /j'h(s)ds}
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Unsaturated hydraulic conductivity: models

Two well-known models:

Mualem-van Genuchten:

1 o\,
s=lrah’]" = K=K 1—[1-@1)

117
%—ah“h+ahﬂ“}

e’ =
T
s

TU Delft

= K(h) =K,



Unsaturated hydraulic conductivity: models

Two well-known models:

Brooks-Corey:
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Unsaturated hydraulic conductivity: models

: a
Examples Fitted Gardner model K(h) = —h<0
b+|h|
1.E+02 £ T
" Sand 3
k(cmd™) ¢ :
F 3
1.E400 ]
Loam j
1602 ]
1604 L .
1.E+00 1.E+02 1.E+04

Suction, H (cm water)
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Unsaturated hydraulic conductivity: models

Examples  Mualem- van Genuchten model

: Fine to medium sand
10° 3
g
1! 2 1
10%4
— E {O\ 10—3 1‘,
g 1 ? '\__ <
- ] = 1o \u
= - o NG g
10°3 10°
E 10—6 l \ "'
B 10_7 R \ -
10' 1 \'-\ w
3 10°® .
] 107
100 I 4 ; : . 3 ‘ 10" — T — T —TTTTTTT —rT T —rTTrrm
0 01 02 03 04 05 0§ 07 08 08 10° 10! 102 10° 10* 10°
0 (cm’/cm?) Il (em)
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Determining soil physical parameters:
standard laboratory

Saturated hydraulic conductivity: two experiments

_ L
K= ="
AAH K. =
Generally: K, < K ?? A(
T




Determining soil physical parameters:
standard laboratory

Unsaturated hydraulic conductivity: Wind’s method

evaporation Q = m.—m,_,
A Y AtpV
Q m, —m
K= t _ d
hz — h1 Ht B V
h -1 Puw
2 AZ
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Determining soil physical parameters: inverse method

Multi-step outflow experiment

To determine Van
Genuchten parameters

_ -n
S, =|—1
L e n
ﬁ 1+ ({1]1 )
\ transducers
\ e | mT
_ porous
quick nylon - l = - I/m
gzﬁgrsmect membrane Kl’ Se [1 { 1 Se

Courtesy of Jan Hopmans (Davis, CA)
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Determining soil physical parameters: inverse method

Experiment:

= Apply a sequence of air pressure steps to initially
near-saturated soil core;

=  Monitor cumulative drainage volume and
tensiometer pressure with pressure transducers;

= Measure boundary and initial conditions
o Y _

Courtesy of Jan Hopmans (Davis, CA)
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Determining soil physical parameters: inverse method

Multi-step outflow: analysis

Estimate the Van Genuchten parameters

a, N, es’gi Ksat’
by solving Richards equation (e.g. Hydrus) for the same problem
and minimising differences between observed and simulated
outflow.

A

Minimization by:

o e e g
't RIS S0 ARy 00

 Levenberg-Marquardt ]

* Downhill Simplex

» Genetic algorithm

Fressure Head

| o

]
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Determining soil physical parameters: inverse method

Multi-step outflow: analysis
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Courtesy of Jan Hopmans (Davis, CA) ,;
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Determining soil physical parameters: inverse method

Multi-step outflow: analysis

-100 4 — 1.B+01 -
.90 4 - =
> 4 0-250, direct 2 1m0
—0-250, inverse £
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60 A 2
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30 A o
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=
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-
0 : : . : : . T
1.E-06
0.056 0.4 045 0.2 0.25 0.3 0.35 0.4

0.05
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(a)

— ()-250, inverse
= 0-250, K-3
o 0-250, K-23
o 0-250, K-32
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Water Content
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Determining soil physical parameters: inverse method

Multi-step outflow: analysis

10 samples at
the time at UC
Davis, Ca, USA

Courtesy of Jan Hopmans (Davis, CA)
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Pedotransfer functions

The idea: establish relations between soil physical parameters
and mappable soil features (OM, clay content, etc.) and use
these to predict parameters at unvisited locations.

Three main types:
- Classes
- Multi-linear regression methods

- Neural networks

T
5
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B8  matig lichte zavel
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6. = 06311 + 0,003383 * LUTUM - 0,09699 = DICITTTIEILD? -

P d t f f t- 0,00204 * DICHTHEID * LUTLIM (B2 =195 %)

K' = S42,6 4+ 8,71 F HUMUS + 61,9 % DICIHTTTIEID - 20,79 * DICIHTTHIEID? -
02107 = HUMUS2 - 001622 * LUTUNM * HILINMLUS -

5,382 % DICIHTTHETID * FIUNLUS (R2=131"%)

Multi-linear regression
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Pedotransfer functions

i

Neural networks —
(Rosetta: US Salinity Riverside)

l

Five levels of input:
e Soil textural class ——— Lookup Table
e Sand, silt and clay percentages
e Sand, silt and clay percentages and bulk density
e Sand, silt and clay percentages, bulk density
and a water retention point at 330 cm (33 kPa). > NN
e Sand, silt and clay percentages, bulk density
and water retention points at 330 and 15000 cm (33 and 1500 kPa)J
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http://upload.wikimedia.org/wikipedia/commons/3/3d/Neural_network.svg

CEI 4440 Soil Hydrology

Set up of lecture today

1. Soil physics; Measuring soil moisture
2. Hydrostatics; Measuring soil tension
3. Soil hydraulics; pF curves

4. Soil infiltration and field tests

5

. Soil hydraulics; Permeability
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