Photovoltaics

Photovoltaics (PV) literally means "light-electricity"

- direct conversion of light into electricity based on the photovoltaic effect
- advanced semiconductor device: solar cells (do not confuse with solar collectors)
- the main energy source for the "post-fossil-era"

A. Poruba, Solartec

Photovoltaic solar energy

Advantages:

- environmentally friendly
- no noise, no moving parts
- no emissions
- no use of fuels and water
- minimal maintenance requirements
- long lifetime, up to 30 years
- electricity is generated wherever there is light, solar or artificial
- PV operates even in cloudy weather conditions
- modular "custom-made" energy can be sized for any application from watch to a multi-megawatt power plant

Limitations:

- PV cannot operate without light
- high initial costs that overshadow the low maintenance costs and lack of fuel costs
- large area needed for large scale applications
- PV generates direct current special DC appliances or an inverter are needed
- in off-grid applications energy storage is needed

Solar cell operation

Solar cell operation is based on the photovoltaic effect:

The generation of a voltage difference at the junction of two different materials in response to visible or other radiation.

Solar cell external parameters

I-V measurement

Standard test conditions:

- AM1.5 spectrum
- irradiance 1000 W/m²
- temperature 25°C

External parameters:

- Short circuit current I_{sc} [A]
- Open circuit voltage V_{oc} [V]
- Fill factor ff
- Maximum (peak) power P_{max} [W_p]
- Efficiency η

$$\begin{aligned} \mathbf{P}_{\mathrm{max}} &= \mathbf{V}_{\mathrm{mp}} \mathbf{I}_{\mathrm{mp}} = \mathrm{ff} \ \mathbf{V}_{\mathrm{oc}} \ \mathbf{I}_{\mathrm{sc}} \\ \eta &= \mathbf{P}_{\mathrm{max}} / \mathbf{P}_{\mathrm{I}} = \mathrm{ff} \ \mathbf{V}_{\mathrm{oc}} \ \mathbf{I}_{\mathrm{sc}} / \mathbf{P}_{\mathrm{I}} \end{aligned}$$

Theoretical efficiency as a function of semiconductor band gap

Main energy losses:

- Non-absorption of low-energy photons
- Thermalization of excess photon energy
- Voltage factor
- Fill Factor
- Collection efficiency

Three generations of solar cells

I. Wafer based Si

II. Thin films

III. Cheap and efficient

Concepts for 3rd generation cells

- Up- and down conversion
- Intermediate band
- Hot carriers

- Superlattices
- Quantum dots
- Nanotubes

Solar cell technologies

Technology	c-Si	HIT Heterojunction with	TF Si	CIS	CdTe	DSSC Polymer
		Intrinsic Thin Layer	(stabilised)		1	rolymer
Record cell	24.7 Mono 19.8 Multi 16.6 transfer	22.3	9.3 Single 12.4 Tandem 13.4 Triple	18.9	17.0	11 unstable
Record module	22.7 _{Mono} 15.3 _{Multi}	?	10.4 Triple	13.4	10.7	4.7
Commercial module	12-17	16-17	5-9	9-11	10	not available
Cost reduction	Limited	Limited	++	++	++	++?

Bulk materials for solar cells

Bulk Crystalline Silicon

Thin-film materials for solar cells

Thin-film Silicon

Hydrogenated amorphous silicon (a-Si:H)

Hydrogenated microcrystalline silicon (µc-Si:H)

PV system

Solar cell

• semiconductor device

Solar panel (PV module)

• different than collector

Solar array

Solar system:

- solar panel
- battery
- inverters
- electrical components
- appliance

Solar cell applications

- **GaAs** (Gallium Arsenide)
- **CIGS** (Copper Indium Gallium Diselenide)
- CdTe (Cadmium Telluride)
- a-Si:H (Hydrogenated amorphous silicon)

PV industry

PV industry: the fastest growing industry in the world

PV applications

1. Off-grid (stand alone) residential power systems

(solar home systems for individual household)

2. Grid connected PV systems

(roofs and outer walls of buildings, noise barriers along the motorways)

3. Off-grid industrial power systems

(water management, lighting, and telecommunication)

4. Consumer products

(watches, calculators, and lanterns)

5. Space applications

PV module market

Market sector [MWp]	1993	1996	1999	2001	2003
Consumer products	18	22	35	45	65
US off-grid residential	5	8	13	19	30
World off-grid rural	8	15	31	45	70
Communications/signal	18	23	35	46	70
PV/diesel commercial	10	12	25	36	50
Grid connected	2	7	60	199	365
Central power	2	2	2	5	8
Total	63	89	201	395	658
Average price (US\$/W _p)	4.25	4.00	3.50	3.50	3.00

P.D. Maycock, Renewable Energy World, Vol. 7, No. 4, 2004

Primary challenge for PV

Cost reduction of factor 5

to become competitive with conventional electricity

Today PV module price: 3.5-5.0 €/W_p (W_p = Watt peak)

Integral approach:

Reducing module costs ↓ raw materials & labor, investments ↑ efficiency, lifetime

Note: overall optimum ≠ highest efficiency

Learning curve

The combined effect of technology development and manufacturing experience

Cost reduction of PV systems

Requirements:

- low cost solar energy material
- high efficiency and good stability
- low manufacturing cost with good yield
- environmental safety and short energy pay back time

Energy pay back time: the time required for an energy conversion system or device to produce as much energy as is consumed for its production

Wim Sinke (ECN, Leader of WG 3 : Science, technology & applications of EU PV Technology Platform)

2005

PV electricity prices*) compared with typical consumer electricity prices

*) depreciation 25 yrs, real interest rate 4%, O&M cost 1%/yr, PR 0.75 (example)

2010

2015

2020

2030

