
March 20, 2008

1

Organic solar cells

Opto-Electronic Materials, DCT

Tom J. Savenije

Opto-Electronic Materials Section
DCT,TNW

Delft University of Technology
The Netherlands



March 20, 2008 2

Outline

Why using organic materials

Fundamental aspects of organic semiconductors
- energy levels in molecular materials
- excitations in inorganic and organic SCs
- exciton diffusion

Examples of organic solar cells
- Dye sensitised solar cells
- Polymer bulk heterojunction cells
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Organic materials in 
Photovoltaic cells

Advantages
- tailoring of opto-electronic properties

O

O

*S*

n

C8H17 C8H17 N
S

N

*

n

MDMO-PPV

rr poly (3,hexyl)thiophene

NC *

MeO

OR

CN

n

MeO

OR

CN-PPV

F8BT



March 20, 2008 4

Organic materials in 
Photovoltaic cells

Advantages
- tailoring of opto-electronic properties

- Variation of optical band-gap: colour
- optimisation of the energy levels
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Organic materials in 
Photovoltaic cells

Advantages
- tailoring of opto-electronic properties
- large areas 
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

From experience with organic LEDS
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Organic materials in 
Photovoltaic cells

Advantages
- tailoring of opto-electronic properties
- large areas 
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

(Possible) problems
- low mobility of charge carriers (p3.13)

  

vi = µiξ
v : velocity
µ :mobility
ξ : electric  field

µn (c-Si) > 1000 cm2/Vs
µh (polymer) ≈ 0.1 cm2/Vs
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Organic materials in 
Photovoltaic cells

Advantages
- tailoring of opto-electronic properties
- large areas 
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

(Possible) problems
- low mobility of charge carriers
- photovoltaic performance (plastic cells: 5%, DSSC’s: 10%)
- stability (10,00 hours minimum operational lifetime)

Crystalline silicon solar cells have efficiencies up to 20%
combined with a lifetime > 20 years
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Cross section of typical c-Si solar cells
(3.2)

n-type layer

absorber layer
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Cross section of typical Si solar cells

n-type layer

Back contact

Incident light

Junction

p-type layer
electron/hole pair
form on photon absorption

absorber layer
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Cross section of typical Si solar cells

n-type layer

Back contact

Junction

p-type layer

Diffusion of charge carriers

absorber layer
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Cross section of typical Si solar cells

n-type layer

Back contact

Junction

p-type layer
Collection by
internal electric field

Front grid

absorber layer



March 20, 2008 13

Homo Junction structure Va = 0 V
(p 4.5 Chp 4)
Internal electric field 

n-type layer

ECB

EVB

Fermi level

p-type 

Depletion layer
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Homo Junction structure Va = 0 V 

Internal electric field 

p-type n-type layer

ECB

EVB

Fermi level
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Homo Junction structure Va = 0 V 

Internal electric field 

p-type n-type layer

ECB

EVB

Fermi level
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Photovoltaic device based on 
molecular semiconductors?

Metal back contact

p-type organic layer

n-type organic layer

TCO
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Semiconductors (3.11)

Vacuum level

ECB

EVB

intrinsic

Electron affinity

Ionisation potential

Fermi level
Forbidden gap

empty

1-3 eV

energy

Doping leads to
p-type or
n-type SCs
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Molecular semiconductors

ECB

EVB

Inorganic semiconductor

Forbidden gap
1-3 eV

HOMO

LUMO

molecular semiconductor

Highest occupied 
molecular orbital

Lowest unoccupied 
molecular orbital

Vacuum level
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Energy levels

Vacuum level

ECB

EVB

Inorganic semiconductor

Electron affinity

Ionisation
potential

HOMO

LUMO

molecular semiconductor

Oxidation potential

Reduction potential

NHE level

EHOMO ≈ -4.5 - e VOX
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n- or p-type molecular semiconductors

Molecular material with a 
high electron affinity:
electron acceptor ⇒
n-type semiconductor

Molecular material with a 
low ionisation potential:
electron donor ⇒
p-type semiconductor

HOMO

LUMO

en
er

gy

Vacuum level

Ionisation
potential

Electron affinity

HOMO

LUMO
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Junction based on molecular 
semiconductors

n-type semiconductor:
Electron acceptor

p-type semiconductor:
electron donor 

HOMO

LUMO

en
er

gy

HOMO

LUMO
No free charge carriers:
no depletion layer 
no internal electric field
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Excitations in inorganic and 
molecular semiconductors 

(isc vs msc)

A charge carrier becomes free from its Coulomb attraction to an 
opposite charge if the energy of attraction is less than kBT

  

E = q2

4πεε0rc

rc =
q2

4πεε0kBT

q = electronic charge
ε0 = permittivity of free space
rc = critical distance

If E =kBT
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Dependence of Rc
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Bohr radius 

  
rB = r0ε

me

meff

rB = Bohr radius of carriers
r0 = Bohr radius of hydrogen atom in the groundstate (0.53Å)
ε = dielectric constant
me = mass of free electron in vacuum
meff = effective mass of electron in SC
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Bohr radius 

  
rB = r0ε

me

meff

rB = Bohr radius of carriers
r0 = Bohr radius of hydrogen atom in the groundstate (0.53Å)
ε = dielectric constant
me = mass of free electron in vacuum
meff = effective mass of electron in SC

Excitation leads in case of

- isc to free charge carriers and

- msc to excitons (coulomb bound 
electron/hole pair)
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Photovoltaic device based on 
molecular semiconductors?

Metal back contact

p-type organic layer

n-type organic layer

TCO
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Excitation in organic junction

n-type semiconductor:
Electron acceptor

p-type semiconductor:
electron donor 

HOMO

LUMO

Exciton: Coulombic bound 
electron hole/hole pair
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organic junction

n-type semiconductor:
Electron acceptor

p-type semiconductor:
electron donor 

HOMO

LUMO
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Excitation near interface

n-type semiconductor:
Electron acceptor

p-type semiconductor:
electron donor 

HOMO

LUMO
∆G > Eexc
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Molecular based organic 
photovoltaic device

Phthalocyanine

p-type material

Perylenediimide
n-type material

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

η <=1%
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Voltage of molecular based organic 
photovoltaic devices

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

n-type SCp-type SC

HOMO

LUMO

Optical
bandgap

Optical
bandgap

Effective
bandgap
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Current of molecular based organic 
photovoltaic device

n-type semiconductor:
Electron acceptor

p-type semiconductor:
electron donor 

HOMO

LUMO

 LEXC = DEXCτEXC

Transport of excitons
by diffusion (Chp 3):



March 20, 2008 33

Molecular based organic 
photovoltaic device

p-type organic layer

n-type organic layer

TCO

LEXC LEXC
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Molecular based organic 
photovoltaic device

p-type organic layer

n-type organic layer

TCO

LEXC

Solution:
increase the interfacial area

LEXC
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Outline

Why using organic materials

Fundamental aspects of organic semiconductors
- excitations inorganic and organic SCs
- energy levels in molecular materials
- exciton diffusion

Examples of organic solar cells
- Dye sensitised solar cells
- Polymer bulk heterojunction cells
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Dye sensitised solar cells (Graetzel cells)

5 - 20 nm thick
nanocrystalline TiO2

Electrolyte
Substrate

TCO 
Dye:
ruthenium 
complex

load
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Primary Processes

3
S1

S 0

CB

dye

21

TiO2

VB

1: photo-excitation
2: (non)radiative decay
3: electron transfer
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Secondary Processes

3 S1

S 0

CB

dye

21

TiO2

VB

1: photo-excitation
2: (non)radiative decay
3: electron transfer

4: electron transport
5: hole transport

6: recombination

4

5

6
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Electron transport via particles

5 - 20 nm thick
nanoporous TiO2

Electrolyte
Substrate

Negative pole 
Dye:
ruthenium 
complex
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Hole transport by redox couple

Electrolyte Dye:
ruthenium 
complex

2Dye+ + 2I- 2Dye + I2

Pt metal contact
Positive pole

At dye/electrolyte interface

I2 + 2e- 2I- At electrolyte/Pt interface
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DSSCs on the market

dye_solar_cells.htm

•Copyright © Solaronix SA All Rights Reserved

•First large area dye solar cell modules 
•made with industrial materials & methods 
•45 x 45 cm surface, 33 serially connected cells
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Present developments on DSSC

- improvement of absorption of dye molecules to absorb 
all sun light with λ < 1000 nm

- omit the liquid phase by using solid state hole conductor 
to avoid leakage

- usage of ordered nanowires to optimize electron 
transport properties



March 20, 2008 43

Polymer solar cells

Electron acceptor (A)

MDMO-PPV

hν

e-
OMe
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O
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n

PCBM

Electron donor (D)

*S*

n
P3HT
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Photovoltaic Cell

(Flexible) 
substrate

Blend: bulk heterojunction

Metal contact

- η: ca 5 %
- Flexible 
- Cheap materials
- Simple processing
- Tunable color
- Thin layers
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Nano morphology of bulk 
heterojunction (TEM)

PCBM

polymer

crystalline P3HT 
domain
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Polymer solar cells 

PPV
PCBM

1

2

4 6

5

3

7

1: Excitation
2: Exciton migration
3: (Non)radiative decay
4: Charge separation
5: Charge recombination
6: Electron transport
7: Hole transfer

VOC = 0.6 V
Isc = 0.97 mA/cm2

FF = 0.68
η = 5%
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Plastic solar cells on the market

•http://www.konarkatech.com
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Present developments on 
polymer solar cells

- Reduce bandgap of polymeric materials to absorb all sun 
light with λ < 1000 nm

- Optimize energy levels to avoid additional energy loss 
during charge separation

- enhance crystallinity of materials to improve charge 
carrier transport
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Questions

• Which factors do affect the potential in a polymer solar cell?
• Calculate the critical distance in a photoactive blend layer with ε=4.5 at 

room temperature
• Calculate the minimum thickness of an organic blend layer consisting of a 

1 tot 1 mixture of a conjugated polymer and a wide bandgap SC in order 
to absorb 90 % of the incident light. Neglect the reflection; the polymer 
has an α = 18x106m-1

• Calculate the average period it takes for an exciton to cross 5 nm in a 
molecular material. The exciton lifetime is 2 ns and the exciton diffusion 
length is 25 nm. 


