Organic solar cells

Tom J. Savenije

Opto-Electronic Materials Section DCT,TNW Delft University of Technology The Netherlands

March 20, 2008

1

Opto-Electronic Materials, DCT

Delft University of Technology

Outline

Why using organic materials

Fundamental aspects of organic semiconductors

- energy levels in molecular materials
- excitations in inorganic and organic SCs
- exciton diffusion

Examples of organic solar cells

- Dye sensitised solar cells
- Polymer bulk heterojunction cells

March 20, 2008

<u>Advantages</u>

- tailoring of opto-electronic properties
 - Variation of optical band-gap: colour
 - optimisation of the energy levels

<u>Advantages</u>

- tailoring of opto-electronic properties
- large areas
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

From experience with organic LEDS

March 20, 2008

<u>Advantages</u>

- tailoring of opto-electronic properties
- large areas
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

<u>Advantages</u>

- tailoring of opto-electronic properties
- large areas
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

(Possible) problems

- low mobility of charge carriers (p3.13)

$$v_i = \mu_i \xi$$

v : velocity

 μ_n (c-Si) > 1000 cm²/Vs μ_h (polymer) \approx 0.1 cm²/Vs

 μ : mobility

 ξ :electric field

March 20, 2008

<u>Advantages</u>

- tailoring of opto-electronic properties
- large areas
- low temperatures (RT)
- processing from solution
- roll to roll manufacturing
- low substrate costs

(Possible) problems

- low mobility of charge carriers
- photovoltaic performance (plastic cells: 5%, DSSC's: 10%)
- stability (10,00 hours minimum operational lifetime)

Crystalline silicon solar cells have efficiencies up to 20% combined with a lifetime > 20 years

Cross section of typical c-Si solar cells (3.2)

Cross section of typical Si solar cells

Cross section of typical Si solar cells

Cross section of typical Si solar cells

Homo Junction structure $V_a = 0 V$

(p 4.5 Chp 4) Internal electric field

Homo Junction structure $V_a = 0 V$

Internal electric field

Homo Junction structure $V_a = 0 V$

Internal electric field

Photovoltaic device based on molecular semiconductors?

March 20, 2008

Semiconductors (3.11)

Vacuum level

Molecular semiconductors

Vacuum level

March 20, 2008

Energy levels

Vacuum level

March 20, 2008

n- or p-type molecular semiconductors

Junction based on molecular semiconductors

Excitations in inorganic and molecular semiconductors (isc vs msc)

A charge carrier becomes free from its Coulomb attraction to an opposite charge if the energy of attraction is less than k_BT

$$E = \frac{q^2}{4\pi\varepsilon\varepsilon_0 r_c} \qquad \text{If } E = k_B T$$
$$r_c = \frac{q^2}{4\pi\varepsilon\varepsilon_0 k_B T}$$

q = electronic charge $\epsilon_0 =$ permittivity of free space $r_c =$ critical distance

March 20, 2008

Dependence of R_c

March 20, 2008

Bohr radius

$$\textbf{r}_{B} = \textbf{r}_{0} \mathcal{E} \frac{m_{e}}{m_{eff}}$$

- $r_B = Bohr radius of carriers$
- $r_0 =$ Bohr radius of hydrogen atom in the groundstate (0.53Å)
- ϵ = dielectric constant
- m_e = mass of free electron in vacuum
- m_{eff} = effective mass of electron in SC

Bohr radius

$$\textbf{r}_{B} = \textbf{r}_{0} \mathcal{E} \frac{\textbf{m}_{e}}{\textbf{m}_{eff}}$$

- $r_B = Bohr radius of carriers$
- r_0 = Bohr radius of hydrogen atom in the groundstate (0.53Å)
- ϵ = dielectric constant
- m_e = mass of free electron in vacuum
- m_{eff} = effective mass of electron in SC

Excitation leads in case of

- isc to free charge carriers and
- msc to excitons (coulomb bound electron/hole pair)

Photovoltaic device based on molecular semiconductors?

March 20, 2008

Excitation in organic junction

Exciton: Coulombic bound electron hole/hole pair

organic junction

Excitation near interface

Molecular based organic photovoltaic device

FIG. 1. Configuration and current-voltage characteristics of an ITO/CuPc (250 Å)/PV(450 Å)/Ag cell.

η <=1%

March 20, 2008

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

Voltage of molecular based organic photovoltaic devices

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

Current of molecular based organic photovoltaic device

Molecular based organic photovoltaic device

March 20, 2008

Molecular based organic photovoltaic device

Solution: increase the interfacial area

March 20, 2008

Outline

Why using organic materials

Fundamental aspects of organic semiconductors

- excitations inorganic and organic SCs
- energy levels in molecular materials
- exciton diffusion

Examples of organic solar cells

- Dye sensitised solar cells
- Polymer bulk heterojunction cells

Dye sensitised solar cells (Graetzel cells)

Primary Processes

- 1: photo-excitation
- 2: (non)radiative decay
- 3: electron transfer

Secondary Processes

- 1: photo-excitation
- 2: (non)radiative decay
- 3: electron transfer
- 4: electron transport
- 5: hole transport
- 6: recombination

Electron transport via particles

Hole transport by redox couple

DSSCs on the market

First large area dye solar cell modules
made with industrial materials & methods
45 x 45 cm surface, 33 serially connected cells

March 20, 2008

•Copyright © Solaronix SA All Rights Reserved

Present developments on DSSC

- improvement of absorption of dye molecules to absorb all sun light with λ < 1000 nm
- omit the liquid phase by using solid state hole conductor to avoid leakage
- usage of ordered nanowires to optimize electron transport properties

Polymer solar cells

Photovoltaic Cell

March 20, 2008

Nano morphology of bulk heterojunction (TEM)

March 20, 2008

Polymer solar cells

- 1: Excitation
- 2: Exciton migration
- 3: (Non)radiative decay
- 4: Charge separation
- 5: Charge recombination
- 6: Electron transport
- 7: Hole transfer

March 20, 2008

Plastic solar cells on the market

•http://www.konarkatech.com

March 20, 2008

Present developments on polymer solar cells

- Reduce bandgap of polymeric materials to absorb all sun light with λ < 1000 nm
- Optimize energy levels to avoid additional energy loss during charge separation
- enhance crystallinity of materials to improve charge carrier transport

Questions

- Which factors do affect the potential in a polymer solar cell?
- Calculate the critical distance in a photoactive blend layer with $\epsilon\text{=}4.5$ at room temperature
- Calculate the minimum thickness of an organic blend layer consisting of a 1 tot 1 mixture of a conjugated polymer and a wide bandgap SC in order to absorb 90 % of the incident light. Neglect the reflection; the polymer has an $\alpha = 18 \times 10^6 \text{m}^{-1}$
- Calculate the average period it takes for an exciton to cross 5 nm in a molecular material. The exciton lifetime is 2 ns and the exciton diffusion length is 25 nm.

