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Targets ECN research

Transition to renewable energy supply:

efficiency improvement

development of renewable energy

clean use of fossil fuels

maximum reliability
minimum environmental burden

optimal cost effectiveness
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ECN Programme units

Strategically Policy Studies

Energy savings Energy Efficiency in Industry
Renewable Energy in the Built Environment

Renewable energy Solar Energy
Wind Energy
Biomass, Coal & Environmental research

Clean use fossil fuels Hydrogen & Clean fossil fuels

Support Engineering & Services
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Fuel Cell 
Technology
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Energy Eff. in the 
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13%
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ECN Solar Energy
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Solar Energy

• Silicon Photovoltaics
• Thin-Film Photovoltaics
• PV Module Technology

Objective:
• Price of solar electricity in 2015 the same as consumer 

electricity price, and after that even lower
- High efficiency
- Reduction of material use
- Cost effective and environmental friendly processes and 

products
- Long lifetime of the modules
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PV technology development:
no revolution, but evolution
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ECN Solar Energy
Thin-film photovoltaics

• Sensitised oxides 
– efficiency, stability, manufacturing technology
– solid state version: in 2015 η=8% for 10x10 cm2

device with >10 year outdoor stability
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ECN Solar Energy

Thin-film photovoltaics
• Organic solar cells

– device fabrication, efficiency and stability
– in 2015 η=8% for 10x10 cm2 device

with >10 year outdoor stability
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ECN Solar Energy

Thin-film photovoltaics
• Thin-film silicon

– R-2-R deposition of (n,i,p) silicon on foils
– Development of thin-film Si tandems
– In 2015 a 0.3x1 m2 PV module η=12% at 0.8€/Wp



13

New concepts
•improved spectrum utilization
•flat plate concentrator

ECN Solar Energy
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ECN Solar Energy

PV systems 
• grid interaction
• system design & monitoring
• standards and guidelines
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Crystalline Si PV technology

Objective:
• Price of solar electricity in 2015 the same as consumer 

electricity price, and after that even lower
- High efficiency
- 18% module efficiency for crystalline Si PV

- Reduction of material usage
- Thin wafers (<150 µm compared to current >240 µm)

- Cost effective and environmental friendly processes and 
products

- Long lifetime of the modules (>30 yr for crystalline Si)

- Energy Pay Back Time < 1 yr
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Cell structure 
Crystalline silicon solar cell (minority carrier device)

• Base: B doped Si (p-type)
• Emitter: P doped layer (n-type)

- Recombination losses in base and emitter
- Voltage over pn junction

• Metallization for contacts
- Shading losses
- Resistance losses

• Antireflection coating to 
enhance current

• Surfaces: recombination losses
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Cell structure 
Crystalline silicon solar cell

• Base: B doped Si (p-type)
• Emitter: P doped layer (n-type)
- Voltage over pn junction
- Recombination losses

• BSF: p+ doped layer
- Highly doped
- Reduced

recombination

photon Back 
Surface 
Field

recombination

collection

EF

EC

EV junction
p-type p+-typen-type
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Cell structure 
Losses in crystalline silicon solar cell

• Colour mismatch
• Fundamental recombination

• Additional recombination
- Impurities, defects, surfaces

• Shading
• Reflection, absorption and transmission

- Absorption at the rear
• Resistance
• Non-ideal band gap

Crystalline Si solar cell: η=13-20%

Eband

generation

recombination

hν

η≤30%
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Cell characterization

• Current Voltage (IV curve)
- Open circuit voltage Voc

- Short circuit current Jsc

- Efficiency
- Resistance losses

-10

0

10

20

30

-0.4 -0.2 0 0.2 0.4 0.6 0.8
Voltage (V)

J 
(m

A
/c

m
2)

Rserie

Rshunt

standard



20

Cell characterization

• Internal Quantum Efficiency IQE
- IQE=collected carriers / absorbed photons
- Depth profile cell quality
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Crystalline Si PV technology

• Feedstock
- Effect impurities on cell output

• Wafers
- Monocrystalline Si
- Multicrystalline Si

• Cell technology
- High efficiency with industrial in-line processing

• Module Technology
- Module design integrated with cell concept
- Simple interconnection and encapsulation

• Costs and environmental aspects
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Crystalline Si PV technology

• Feedstock
- Effect impurities on cell output

• Wafers
- Monocrystalline Si
- Multicrystalline Si

• Cell technology
- High efficiency with industrial in-line processing

• Module Technology
- Module design integrated with cell concept
- Simple interconnection and encapsulation

• Costs and environmental aspects
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Feedstock production
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Feedstock production

• Direct route: SOLSILC process

• plasma furnace: SiC from pure SiO2 and pure C
pellets of SiC and SiO2                          Si(L)

SiC
SiO2

SiO+SiC
Si+SiO2

CO

2Si+CO
2SiO

Si(liq)
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Feedstock: ingot growth

• Multicrystalline Si
ingot growth
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Feedstock: effect impurities

segregation

contamination from crucible

dissolution evaporation from melt

Decreasing:
[Oi]

Increasing:
dopant conc. 
metal conc.
[Cs]

small grain bottom

• Feedstock
- Melting
- Crystallization

• Ingot
- Sawing

• Wafer
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Feedstock: effect impurities
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Feedstock: effect impurities

Impurities added to feedstock
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Feedstock: effect impurities

Impurities added to feedstock
• Ingot growth
• Wafering
• Cell processing
• Characterization
• Model development

- 1/Leff
2∝1/τ ∝Cimp

- Segregation
during growth

- Solar cell modeling

• Needed to define
Solar Grade Si
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Wafer technologies

liquid Silicon
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solid interface
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Wafer technologies

• Multicrystalline Si
ingot growth
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Wafer technologies

• From ingot to
mc-Si wafer
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Wafer technologies

• High quality monocrystalline Si material
- Low impurity concentration
- Low defect concentration
- Higher efficiency (15-17% in industry, 20% pilot)
- Higher costs per cell

• Lower quality multicrystalline Si material (mc-Si)
- Higher impurity concentration
- More defects
- Lower efficiency (13-15% in industry, >16% pilot)
- Lower costs per cell

• For both technologies: high sawing losses (about 50%!)
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Wafer technologies

Edge defined Film-fed Growth
(SCHOTT Solar)

String Ribbon

• Ribbon technologies
(multicrystalline Si)

• Substrate growing and
crystallization in the same
direction
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Wafer technologies

• ECN’s ribbon technology
Ribbon Growth on Substrate
RGS

• Substrate growing
perpendicular to
crystallization

Finished foils

AnnealingGassingCasting frame 
(cut)

Continuous substrate Preheating

Direction
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Wafer technologies

Ribbons:
• Better use of Si material (about factor 2)
But
• Lower initial material quality
• Lower efficiencies

• EFG/SR: about 14% (industry)
• RGS: about 13% (lab)
- Very high throughput

Material Pull
Speed

[cm/min]

Through-
put

[cm2/min]

Furnaces
per 100

MW
EFG 1.7 165 100
SR 1-2 5-16 1175
RGS 600 7500 2-3

*[J. Kalejs, E-MRS 2001 Strasbourg]
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Wafer Technology

RGS cell efficiencies using industrial process
• Average efficiency 12.5%.
• Current top efficiency 13%confirmed

• High efficiency lab processing 14.4%confirmed

• ~100 µm thin RGS wafer made
• Efficiency around 11%
• 2.9 g Si/Wp (nowadays ~10 g Si/Wp)
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Cell processing

• Saw damage removal
- Texturing for enhanced light coupling 

(better efficiencies)
• Emitter diffusion
- Material improvement by gettering

• SiNx deposition as antireflection layer
- Material improvement by passivation
- Reduced surface recombination

(surface passivation)
• Metallization
- Ag front side
- Al rear side (so-called Back Surface Field)

• Sintering for contact formation
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Cell processing
Batch processing
• Wafers in carriers
• Each process step well controlled
• Used for high efficiency processing

etching junction ARC contacts

unloadload

transport
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Cell processing

ECN’s inline processing
Horizontal wafer transport on belts (wafer in; cell out)

• No wafer carriers
• Large and thin wafers easier to handle (cost reduction)

etching junction ARC contacts
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Cell processing

Examples from industry
Batch processing BP Solar

In-line processing SCHOTT Solar
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Cell processing

ECN Baseline process
• Multicrystalline p-type Si
• Acidic texturing / saw damage removal
• P diffusion using belt furnace
• Deposition of SiNx
• Metallization (Ag front, full Al rear)
• Simultaneous sintering both contacts

Results
Processing complete columns of wafers
during two years

• Average 16%
• In industry about 15%

Wet chemical etching

Sintering contacts
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Texturing
Acidic texturing of mc-Si

Alkaline and acidic etch
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Texturing
Acidic texturing of mc-Si

cooler

inlet

etch bath

rinse

rinse
destaining

drying

outlet

exhaustsexhausts
HNO3 dripHNO3 drip

controller
belt speed
controller
belt speed
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Texturing
Acidic texturing of mc-Si

• Lower reflection, higher efficiency
- About 0.5% absolute

• Better appearance
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Texturing
Surface structure texturing Si

• Monocrystalline Si
- Alkaline etching (NaOH or KOH)
- Anisotropic etching

- (111) planes slowest etching rate
- Pyramids on (100) substrates

• Multicrystalline Si
- HF/HNO3 etching
- Isotropic etching

- Random structure
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Texturing Micro structure
Alkaline etching of Si

Si + OH– + H2O SiO3
2– + H2 gas

• Higher concentrations and higher T
- Almost isotropic etching
- High etching rate
- Used to remove saw damage (5-10 µm)
- High reflectance (~30%)

Full size wafer
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Texturing
Alkaline etching of Si

• Lower concentrations and lower T
- Anisotropic etching

- (111) planes slowest etching rate
- Pyramids as texture on (100) substrates
- Low reflectance (~10%)

- But, low etching rate
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Texturing
Acidic etching of Si

Mixture HF/HNO3

Oxidation
3 Si + 4 HNO3 3 SiO2 + 4 NO gas + 2 H2O

Oxide removal
SiO2 + 4 HF SiF4 gas + 2 H2O

• Obtained surface morphology depends on
composition
- Polishing
- Defect etching
- Texturing
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Emitter processing
Needed to form p-n junction
• Apply P source
• Diffusion at ~900 C for about 10 minutes

• Depth about 0.5 µm
• P concentration at surface: > 2×1020 cm-3

- Higher concentration needed
for good contacting

- However, it will result in additional
recombination losses

Improved emitter/front side processing can give an efficiency gain of 
more than 0.5% absolute
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Emitter processing
Effect dopant concentration on IQE
• Improved blue response (up to 550 nm) for lower dopant

concentration
• Higher Voc and higher Jsc: higher efficiency!
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Emitter processing
Additional effect of emitter processing

• So-called gettering
- Diffusion of impurities to P rich layers (P-gettering)
- Impurities will not affect efficiency in those P rich layers

• Improved bulk quality and, thus, higher efficiency

impurity

diffusion
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SiNx deposition
Applied using chemical vapour deposition
• Low pressure chemical vapour deposition (only surface 

passivation, ~700 C)
• Plasma enhanced chemical vapour deposition

(different systems, ~400 C, 0.5-10 nm/s)
• Sputtering (several nm/s)

Functions SiNx:H layer
• Antireflection coating (70-80 nm)
• Surface passivation (reduced recombination at the surface)
• Bulk passivation (improved material quality)

- During anneal H diffuses into bulk and makes defects/impurities 
electrically inactive
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SiNx deposition
Plasma Enhanced Chemical Vapour Deposition (PECVD)
• Parallel plate system

Direct plasma
- Wafers as electrodes
- Ion bombardment dependent

on plasma frequency
- Damaged layer

• Remote PECVD
- No ion bombardment

Aberle et al. 
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substrates

SiH4

NH3 or N2

MW plasma

SiNx deposition
ECN MicroWave Remote PECVD
• Deposition rate about 1 nm/s
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SiNx deposition
Expanding Thermal Plasma (ETP)
• Developed by TU/e
• Deposition rate 5-10 nm/s
• TU Delft: for thin film Si depositions

} cascade plates (4x) 

anode plate 

nozzle with NH3 injection 

electrode

argon gas inlet 

isolating plates 

 
SiH4 injection ring 

Ar/NH3 plasma expansion 

Plasmabron

Expansie plasma

Substraat
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SiNx deposition
Optical specifications SiNx:H layer
• Refractive index: n=2.1

higher n causes absorption at lower wavelength

• Ideal for air-Si: n=1.9; d=~80 nm
• Ideal for air-glass-Si: n=2.3; d=~65 nm

(absorption SiNx too high)

• n can be tuned with gas composition
• Higher n: more Si (SiH4)
• Lower n: more N (NH3)

201 nnn =
1

0
1 4 n

d
λ

=

Air: n0

Si: n2

SiNx: n1; d1
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SiNx deposition
Optical specifications SiNx:H layer
• Different layer thickness: different colour
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Gettering and bulk passivation (emitter and SiNx:H)
Improved bulk quality using gettering and passivation
• Lifetime>100 µs will hardly affect cell efficiency (diffusion length 2 

times cell thickness)
• Besides higher efficiency, gettering and passivation will result in a 

narrower efficiency distribution.
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Metallization
Screen-printing process and sintering in belt furnace
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Metallization
Principle screen-printing process
• Metallization paste is ‘pressed’ through pattern in screen
• Paste contains metal particles and oxides (etches Si at higher T)

Metallization line
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Metallization
Ag front side metallization
• Fine line metallization printed through patterned screen
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Metallization
Fine line printing
• Reduced shading losses
• Contact resistance might be critical

emulsion    line opening (∼100µm)    fine line        slumping
wire gauze
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Metallization
• Other techniques:

• Plating (electroless)

• Dispensing

• Pad printing

• Roller printing
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Metallization
Al rear side (Back Surface Field to reduce recombination at surface)
• After sintering step (around 800 C, few seconds) highly doped layer
• Better BSF when thicker and higher doped
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Efficiency ECN process

Results ECN Baseline process
Processing two complete columns (different ingots) of wafers during 2 years

• Average 16.0%
• In industry about 15%
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Efficiency ECN process
• High-efficiency (17%) in-line process (300 µm thick; 156 cm2 mc-Si)

- 50 cells processed (best efficiency 17.1%; average 16.8%)
- Module made using cover glass with ARC

Full area efficiency 14.8%; encapsulated cell eff: 16.8%
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Efficiency ECN process
• From 2000 up to now
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Future improvements
Thin wafers
• Rear side critical

Minority carrier
density

• Combination of
generation and
recombination

17.0%: good bulk and rear
15.9%: good bulk, low rear
15.7%: low bulk, good rear
15.3%: low bulk and rear
14.3%: as 15.9%, but thin 0.0E+00
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Future improvement
Al rear side (Back Surface Field to reduce recombination at surface)
• 17% reached on 300 µm thick wafers
However:
• Bowing for thinner wafers
• Recombination losses too high for high efficiencies (>18%)
• Internal reflection too low (~70%) for high efficiencies
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Future improvements rear side
Thin wafers
• Rear side critical (bowing, reflection, BSF)
• New rear side processing using for example SiNx

- Higher efficiencies for thinner wafers

SiNx for rear side passivation
Local rear contacts / BSF
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Future improvements rear side
Thin wafers
• New rear side processing using SiNx

- 16.4% obtained by ECN with baseline-like processing
- About 1% absolute higher than reference with Al BSF

(obtained efficiency depends on Si material quality)
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Future improvements
Thin wafers (less dependent on material quality)
• Improved light management

- Texturing
- Light trapping

• Improved emitter (reduce losses)
• Perfect surface passivation

- Both surfaces
• Less metallization losses

- Series resistance (contact and line resistance)
- Reduced shading losses

20% mc-Si cell efficiency should be possible! (long term)



74

Other industrial cell concepts
Laser Grooved Buried Contacts
BP Solar
• Monocrystalline

Rear side contacted cell
SunPower
• ~20%!
• High quality

and expensive
material
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Other industrial cell concepts
SunPower
• Cell 21.8%
• n-type material
• Module: full area 18.1%

Sanyo
• HIT cell: 21.8%
• n-type material
• Emitter deposited
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Record efficiencies
Monocrystalline (4 cm2): 24.7%
Monocrystalline (149 cm2): 21.5%
Multicrystalline (1 cm2): 20.3%
Multicrystalline (137 cm2): 18.1%

ECN multi (156 cm2): 17.0%
Single layer ARC; homogeneous emitter; inline processing

Highest efficiency with completely inline processing
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Module technology
Conventional module technology (soldering)

Glass

EVA

Solar cells

EVA

Tedlar foil

Series connection

Interconnection strips (tabs)
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Module technology
Conventional module technology

interconnection lamination
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Module technology

Pilot-line tabber-stringer for interconnection
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Module technology
Pilot line to be built at ECN

Fully automated and realibility-tested interconnection process for 
back-contact cells and suitable for thin and fragile cells
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Module technology
New module technology:
• New cell designs needed

- Back contacted
- Simple interconnection
- Can be used for thin cells

MWT

MWA

EWT

PUM
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Module technology
Emitter Wrap Through:
• No metallization on the front
• Thousands of holes
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Module technology
ECN’s PUM concept:
• More energy from attractive cells
• 2-3% less shading
• Resistance losses independent

on cell size (only on size unit cell)
• Standard cell processing except:

- Laser drilling holes
- Junction isolation around holes

Mother Nature’s 
water lily
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Module technology
ECN’s PUM concept:
• Single shot interconnection

and encapsulation

Single step module assembly

Glass plate

PUM cell

Rear side foil

Adhesive
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Module technology
ECN’s PUM process:
• Foil preparation
• Apply conductive adhesive

instead of soldering
(lower stress)

• Pick and place cells
• One step curing

and encapsulation
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Module technology
ECN’s PUM result:
• Full size module (71×147 cm2)
• 128 Wp (15.8% encapsulated

cell efficiency)
• 0.6-0.8% absolute efficiency gain

Best PUM cell result up to now:
• 16.7% (225 cm2)

At this moment PUM is the 
only integrated concept for
cell and module
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PV market
Annual market growth more than 40%

Photon International, 2006

Growth rate 2004: 67%

2005: 1720 MWp (+44%)

Japan: ~50% market share
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PV market
More than 90% crystalline Si technology

Photon International, 2006
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PV market
Expected market: solar the most important primary energy source

PV and solar 
thermal power

Wissenschaftliche Beirat 2003
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Costs PV
Contributes wafer is about 45%!
Thinner wafers, or better ribbons, important!

Price solar electricity:
0.20-0.50 €/kWh

(depending on location)

NL: ~0.50 €/kWh

9%

36%

30%

25%

sg-Si
wafer
cells
module
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Cost reduction PV
• Less material use

• Thin ribbons
• Less module materials

• High efficiencies for the same process costs
• Advanced processing
• New cell design

• Easy manufacturing
• Automation
• Easy module manufacturing

• High lifetime
• Improved yearly system output
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Cost reduction PV
• Expected costs
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1000 GWp worldwide
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Cost reduction PV
• Expected costs based on learning curves (EU project Photex)

- Combined effect of technology development, experience, ….
- Progress ratio PR should be around 80%

Power Modules (1976-2001) 

1987
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2001

1983

1990

1976 

1 

10 

100 

0 1 10 100 1000 10000

Cumulative Shipments [MW p] power modules (SU, 2003)

[2001 $] 

Price of Power Modules (2001 $)

Estimate 1976 - 2001: PR = 80.0±0.4%

Estimate 1987 - 2001: PR = 77.0±1.5%
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Cost reduction PV
• Expected costs

• Solar competitive
between 2010-2020

Source: RWE Energie AG and RSS GmbH

Photovoltaics

Utility peak power

Bulk power
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Environmental aspects
• Energy Pay Back Time 2005

Energy Pay-Back Time  
(grid-connected, roof-top PV system; 

irradiation 1700 resp. 1000 kWh/m2/yr)
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Environmental aspects
Energy Pay Back Time 2005 and 2010+

• Low energy consumption especially for Solar Grade Si
• Low material use

(abundance)
• High efficiency
• High lifetime modules
• Environmental friendly

processes
• Recycling
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Conclusions
• Solar Grade Silicon needed for growing market

- Effect of impurities on cell efficiency should be known
• Less Si use with ribbons
• Improved processing has led to 17% mc-Si efficiency using in-line 

processing
• New processes for thin wafers/ribbons under development
• Integrated cell and module design like PUM needed
• High module lifetime
Then
• Cost reduction possible

- Will be competitive with bulk electricity price
• Energy Pay Back Time can be reduced to <1 year
• Solar energy will be the most important primary energy source in

2100
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Applications at ECN
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Applications
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Thank you for your kind attentionThank you for your kind attention

FloriadeFloriade (2.3 (2.3 MWpMWp PV)PV)

Information / internshipInformation / internship
www.ecn.nlwww.ecn.nl
weeber@ecn.nlweeber@ecn.nl
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