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Solutions exam Flight and Orbital Mechanics (November 2011) 
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Angle of attack, cT and airspeed are constant, hence: 
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Question 5: 

The ESA satellite GOCE (altitude 250 km, circular orbit) observes the gravity field of the Earth at this 

very moment. One of the elements of interest is the term J3,1. The gravity potential of the Earth is 

given by the following equation: 
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Here, Pn(sinδ) and Pn,m(sinδ) represent the Legendre polynomials and functions, respectively: 

 

 

 

 

 

a) (2 points) What do the parameters Jn, Jn,m and λn,m represent? 
b) (2 points) How are the parameters r, δ and λ defined? 
c) (2 points) Give the general expression to derive the radial acceleration from the potential 

formulation for the gravity field. 
d) (6 points) Derive the general equation for the radial acceleration due to the term J3,1 for an 

arbitrary satellite (i.e., without substituting any numbers). 
e) (3 points) What is the equation for the radial acceleration due to J3,1 as experienced at GOCE’ 

altitude (expressed in numbers, still for arbitrary latitude and longitude)? 
f) (3 points) What are the values for δ for which this radial acceleration changes sign? 

Data: μEarth = 398600.4415 km3/s2; Re = 6378.137 km; J3,1 = -1.72×10-6; λ3,1 = -1.0°. 

Answers: 

a) J-terms are scaling factors of the irregularities in the gravity field; λn,m defines the orientation of a 
particular irregularity 

b) r = radial distance between position of interest and center of Earth; δ = latitude w.r.t. Earth 
equator; λ = longitude w.r.t. Earth-fixed reference meridian 

c) ar = - ∂U/∂r 
d) ar = - 4 μ J3,1 Re

3 r-5 cosδ ((15/2)sin2δ – (3/2)) cos(λ-λ3,1) 
e) ar = 5.562 10-5 cosδ ((15/2)sin2δ – (3/2)) cos(λ+1.0) [m/s2] 
f) zero values for δ=-90° and +90° -> do not play a role. Other zero values for δ=-26.6° and δ=+26.6° 
  

Question 6: 

Consider a sample return mission to an asteroid (i.e., from Earth to the asteroid and then back to 

Earth again). 

a) (3 points) Compute the 1-way travel time for a Hohmann transfer from Earth to the asteroid. 
b) (2 points) The synodic period can be computed with the following equation: 
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What is the definition of a synodic period? 

c) (2 points) Compute the synodic period for the system Sun-Earth-asteroid. 
d) (2 points) Compute the mean motion of Earth around the Sun (normally labeled “n”, here labeled 

ωE), and of the asteroid around the Sun (labeled ωast) (both in [rad/s]). 
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e) (2 points) The following general equations give the total round-trip time T and the time to be 
spent at the asteroid tstay (provided we do both transfers by means of a Hohmann trajectory, and 
the departure and target objects orbit the Sun in circular orbits): 

 

 

 

 

 

Discuss the meaning of the two equations and the parameter N (i.e., give a physical 

interpretation). 

f) (3 points) What are the values for the parameter N, the stay time, and the total trip time for a 
mission to this asteroid? 

g) (2 points) Can we reduce the total trip time? If so, how? A qualitative answer is sufficient. 

Data: μSun=1.3271×1011 km3/s2; distance Earth-Sun = 1 AU; distance asteroid-Sun = 0.95 AU; 1 AU = 

149.6×106 km. 

Answers: 

a) atr = (aE+aast)/2 = 0.975 AU; T = π√(atr
3/μ) = 15191560 s = 175.83 days 

b) time interval after which relative geometry of 2 objects (planets, asteroids) repeats 
c) TE = 2π√(aE

3/μ) = 31559160 s = 365.27 days; Tast = 29222061 s = 338.22 days; Tsyn = 3.946 108 s = 
4567.15 days = 12.504 years 

d) ωE = √(μ/aE
3) = 1.9909 10-7 rad/s; ωast = √(μ/aast

3) = 2.1502 10-7 rad/s 
e) Equation for stay times gives time needed to wait for favorable geometry for Hohmann return 

trip; since Earth and asteroid have different mean motions around Sun one of them has to orbit 
the Sun an integer number of orbits N more/less than the other. T: total trip time, based on 
Hohmann transfer “out”, stay/wait time, and Hohmann transfer ”back” 

f) tstay > 0  minimum value for N = -1 (must be an integer)  tstay = 3.7901 108 sec = 4386.68 days 
= 12.01 years  T = 4.0939 108 sec = 4738.33 days = 12.97 years 

g) Fly faster leg to asteroid, stay for short time, fly faster leg back to Earth; will cost more energy 
 

Question 7 

a) (6 points) Consider a single-stage rocket. Using the definitions of the payload fraction p 
(p=Mpayload/Mbegin) and the structural mass fraction σ (σ=Mstructure/Mpropellant), derive the following 
relation: 
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Here, Mbegin is the total mass of the launcher before ignition, and Mend is the total mass after 

engine burnout. 

b) (4 points) Now consider a multi-stage launcher, where the payload fractions of the individual 
stages are identical (i.e. ptot = pi

N, where ptot is the payload fraction of the entire launcher, pi is 
the payload fraction of an individual stage i, and N is the total number of stages), the specific 
impulse is identical for the rocket engines of all stages, and the structural mass fraction σ is also 
the same for all stages. 
Derive the following equation for the total velocity gain provided by the launcher: 

 

0 {ln(1 ) ln( )}N
tot sp totV I g N p       

 

c) (3 points) Compute the total velocity gain for a rocket with Isp = 400 s, ptot = 0.02 and σ=0.08, for 
N=1, 2 and 3. 

d) (3 points) Discuss the advantages and disadvantages of replacing a single-stage launcher with a 
multi-stage one. What number of stages would you choose? 

Data: g0 = 9.81 m/s2. 

Answers: 

a) see sheets 
b) see sheets 
c) N=1  ΔVtot = 9337 m/s; N=2  ΔVtot = 12436 m/s; N=3  ΔVtot = 13216 m/s 
d) Advantage: better performance (larger ΔV, more payload, combination). Disadvantage: more 

complexity (jettison stages, ignition) -> more risk. Also: higher development and construction 
costs. E.g. N=10  ΔVtot = 13983 m/s, marginal gains. In practice select N=3 or N=4, complexity 
not worth effort. 

 

 

 

 


