Spatial Tools in Water Resource Management

Wim Bastiaanssen

5. Basic physics of remote sensing and the surface energy balance

PMAPPING Pixel Intelligence (PI) – Mapping Technology

PI Mapping computes the water, energy, radiation and heat balance of vegetated land surfaces

Annual ET Hai Basin 2003

Hai basin

Wetland ET (Sudd and adjoining marshes)

Estimate water use per plot

Avg ETa per plot

METRIC applications

Middle Rio Grande of New Mexico

ET (mm/yr) 0	ETrF 0.00	
500	0.25	
1000	0.50	
1500	0.75	
2000	1.00	
2500	1 25	

Technical University, Delft, 13 February, 2009

Frequency Distribution of ET

15,000 acres of cottonwood and salt cedar

그는 그는 것 같아요. 그는 것 같은 것 같 친구가 친구가 잘 못 하는 것 같아. 나는 것 같아. 가지 않아.

Global Energy Flows W m⁻²

Remote Sensing

Sun Satellite

Two sources of radiation:

Solar radiation

- visible
- near infrared
- short-wave infrared

Earth Surface

- thermal infrared
- microwave

What can remote sensing measure?

- Optical wavelength region:
- Reflective:
- •
- •
- Thermal, Emissive:

visible [0.38 – 0.72 μm] near infrared [0.72-1.30 μm] middle infrared [1.30-3.00 μm] far infrared [7.00-15.0 μm]

Visible spectrum

Atmospheric windows

[6]

Relation between frequency and wavelength

$$c = \lambda v$$
, so $v = \frac{c}{\lambda}$ and $\lambda = \frac{c}{v}$

c speed of light, m/s

 λ wavelength, m (but we often use μ m or nm)

v frequency, Hz (s⁻¹)

Frequency-wavelength relation

- Generally in the microwave part of the spectrum we use frequency instead of wavelength
- Typically measured in s⁻¹, called *Hertz* (Hz)
 - Most often Gigahertz (GHz)
 = 10⁹Hz

Frequency $\nu = \frac{c}{\lambda}$ where c = speed of light $= 3.00 \times 10^8 \text{ m s}^{-1}$

Planck equation, details

Planck's equation (the spectral curves L shown)

$$_{\lambda} = \frac{2hc^2}{\lambda^5 (e^x - 1)}$$
, where $x = \frac{hc}{k\lambda T}$

Stefan-Boltzmann equation

$$E = \pi \int_{\lambda}^{\infty} L_{\lambda} d\lambda = \sigma T^{4}$$

Wien's displacement equation

$$\lambda_{\max}(\mu m) = \frac{2897}{T}$$

- c speed of light
- *h* Planck's constant
- *k* Boltzmann's constant
- σ Stefan-Boltzmann constant 5.67×10⁻⁸Wm⁻²K⁻⁴
- L_{λ} Spectral radiance

 $3.00 \times 10^{8} \text{ ms}^{-1}$ $6.63 \times 10^{-34} \text{Js}$ $1.38 \times 10^{-23} \text{JK}^{-1}$ $5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-1}$ $\text{Wm}^{-2} \text{m}^{-1} \text{sr}^{-1}$

Spectral integration (narrow to broad band)

 $L = \varepsilon L_{\lambda}$

Crop status and radiative behavior (1)

Figure 1 Typical reflectance sensitivities as controlled by leaf pigments, cell structure and water content (adapted from Gaussman, 1977)

Crop health affects reflectivity, emissivity, temperature etc.

Crop status and radiative behavior (2)

Spectral reflectance

Normalized Difference Vegetation Index

What Landsat sees

Transmissivity of atmosphere

Spectral signatures

[12]

Temperature is function of ET

[13]

Surface temperature Lake Albert

Global Energy Flows W m⁻²

Surface energy balance

ET is calculated as a "residual" of the energy balance

Energy and water conversions

$$L = \rho_{w} \lambda_{v} ET$$
Wm⁻²(Jm⁻²s⁻¹) = $\frac{kg}{m^{3}} \frac{J}{kg} \frac{m}{s}$
or $ET = \frac{L}{\rho_{w} \lambda_{v}}$

 $\lambda_v = 2,450,000 \, J \, /kg$

ASCE Standardized

Penman-Monteith

(alfalfa reference)

at Kimberly, Idaho

- hourly time step

Evaporative fraction for time integration

ET for hydrological studies

[15]

Extra-terrestrial radiation

Surface Radiation Balance

Vegetation Surface

Net Surface Radiation = Gains – Losses

$$R_{n} = (1-\alpha)R_{S\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1-\varepsilon_{o})R_{L\downarrow} \qquad R_{L} = \varepsilon\sigma T^{4}$$

$$\varepsilon = \text{emissivity}$$

$$\sigma = 5.67 \ 10^{-8} \text{ Stefan Boltzmann}$$

Soil heat flux

Soil heat flux

Soil heat flux

$G = f R_n$

- Fraction depends on direct exposure
- Fraction depends on pace of warming up
- f = 0.4 for deserts
 - = 0.1 for crops
 - = 0.5 for water bodies
 - = 0.05 for forests

Logarithmic wind profile

Flux – profile relationships for momentum, heat and vapor

Sensible Heat Flux (H)

$$H = (\rho \times c_p \times dT) / r_{ah}$$

dT = "floating" near surface temperature difference (K)

 r_{ah} = the aerodynamic resistance from z_1 to z_2

$$r_{ah} = \frac{\ln\left(\frac{z_2}{z_1}\right) - \Psi_{h(z_2)} + \Psi_{h(z_1)}}{u_* \times k}$$

U_{*} = friction velocity k = von karmon constant (0.41)

Stability correction

$$u^{*} = \frac{u_{200}k}{\ln\left(\frac{200}{z_{0m}}\right) - \Psi_{m(200m)}} \quad r_{ah} = \frac{\ln\left(\frac{z_{2}}{z_{1}}\right) - \Psi_{h(z_{2})} + \Psi_{h(z_{1})}}{u * \times k}$$

- New values for dT are computed for the "anchor" pixels.
- New values for a and b are computed.
- A corrected value for H is computed.
- The stability correction is repeated until H stabilizes.

Evaporation from vegetation

$$L = \beta \left[\frac{e^{*}(T_{s}) - e_{a}}{r_{a} + r_{c}} \right] \frac{\rho_{a}c_{p}}{\gamma}$$

Stomatal regulation

Stomatal regulation

Canopy Resistance Model

Reference ET

51

Penman-Monteith for ET_{ref} (ET₀)

The Penman-Monteith form of the combination equation is:

$$\lambda ET = \frac{\Delta(R_n - G) + \rho_a c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma \left(1 + \frac{r_s}{r_a}\right)}$$
(3)

52

Aerodynamic resistance

BOX 4

The aerodynamic resistance for a grass reference surface

For a wide range of crops the zero plane displacement height, d [m], and the roughness length governing momentum transfer, z_{om} [m], can be estimated from the crop height h [m] by the following equations:

$$d = 2/3 h$$

 $z_{om} = 0.123 h$

The roughness length governing transfer of heat and vapour, zoh [m], can be approximated by:

 $z_{oh} = 0.1 z_{om}$

Assuming a constant crop height of 0.12 m and a standardized height for wind speed, temperature and humidity at 2 m ($z_m = z_h = 2$ m), the aerodynamic resistance r_a [s m⁻¹] for the grass reference surface becomes (Eq. 4):

$$r_{a} = \frac{\ln\left[\frac{2 - 2/3(0.12)}{0.123(0.12)}\right] \ln\left[\frac{2 - 2/3(0.12)}{(0.1)0.123(0.12)}\right]}{(0.41)^{2}u_{2}} = \frac{208}{u_{2}}$$

where u₂ is the wind speed [m s⁻¹] at 2 m.

″UDelft

53

[19]

Potential ET for correction of grass

54

Delft

Crop coefficient

FIGURE 22

The effect of evaporation on K_c . The horizontal line represents K_c when the soil surface is kept continuously wet. The curved line corresponds to K_c when the soil surface is kept dry but the crop receives sufficient water to sustain full transpiration

Sources images

[1] Land Surface Modeling Concept, source: lis.gsfc.nasa.gov

[2] Annual evaporation map, source: unknown

[3] Global energy flows, source: Trenberth et al (2009)

[4] The Electromagnetic Spectrum, source: The COMET Program

[5] Atmospheric Transmission, source: Creative Commons Wikipedia/Robert A. Rohde

[6] EM spectrum micrometers, image courtesy of CCRS/CCT

[7] Fruit Crop Health, source: www.organicfarming.com.au

[8] Rice plants, source: Flickr.com - IRRI Images

[9] Spectral reflectance profiles, source: regional.org.au

[10] Source: Cavero et al (2009)

- [11] Measuring vegetation, source: NASA/Robert Simmon
- [12] Spectral signatures, source: ESA
- [13] The energy balance for rainfed land and irrigated land, source: www.waterwatch.nl
- [14] Source: www.waterwatch.nl
- [15] Water drainage system, source: unknown

[16] Sensors measuring soil temperature and soil heat flux, source: Carbon Sequestion Program, University of Nebraska

[17] Role of SLAC1 channels in stomatal closure, source: Thomine et al (2010)

[18] Image courtesy of Nature Education

[19] Source: www.fao.org

56