Spatial Tools in Water Resource Management

Susan Steele-Dunne

6. Microwave Remote-Sensing

Outline

Introduction to microwave remote sensing

• **Passive** microwave remote sensing

• Active microwave remote sensing

• Exercise: Soil moisture retrieval from ERS WS data

Acknowledgements

- Canadian Center for Remote Sensing
- NASA, ESA
- Comet/MetEd at UCAR

Introduction to Microwave Remote Sensing

- By the end of this section, you will be able to:
- List the advantages of MW remote sensing
- Discuss how MW remote sensing compliments VIS and IR remote sensing
- Define the dielectric constant and explain its significance in MW RS
- Discuss the differences between active and passive MW RS

Most useful for hydrology

[1]

Thermal

Mi<u>cro</u>wave

Microwaves have wavelengths of 0.1-100cm

Different microwave bands provide information about different object characteristics.

Advantages of using microwave ($\lambda = 1-100$ cm)

SAR image (ERS-1), The Netherlands 02/08/1991 local time 23:40 Source: ESA

Advantages of using microwave ($\lambda = 1-100$ cm)

Do not need illumination from the sun

=> images can be acquired day and night!

SAR image (ERS-1), The Netherlands 02/08/1991 local time 23:40 Source: ESA

Advantages of using microwave ($\lambda = 1-100$ cm

Udine, Italy

ERS-1(microwave) 04/07/1993 9:59am (GMT) Landsat-5 (optical) 04/07/1993 9:14am(GMT)

Source: ESA

Advantages of using microwave ($\lambda = 1-100$ cm

Can penetrate clouds

& Independent of atmospheric effects like haze.

Udine, Italy

ERS-1(microwave) 04/07/1993 9:59am (GMT) Landsat-5 (optical) 04/07/1993 9:14am(GMT)

Source: ESA

Advantages of using microwave ($\lambda = 1-100$ cm

Can penetrate clouds

& Independent of atmospheric effects like haze.

NASA

Cloud Amount – 2-Year Average

Advantages of using microwave ($\lambda = 1-100$ cm)

Can penetrate clouds

& Independent of atmospheric effects like haze.

Microwave sensors in polar orbits

- Polar or near polar orbit
- Sun-synchronous
- Altitude ~800km

- View fixed point at same local time (e.g. 6am/6pm)
- Need more frequent observations? extra satellites!

http://en.wikipedia.org/wiki/File:Polar_orbit.ogg

Remote-sensing techniques

Passive Employ natural sources of energy,

e.g. the sun (optical) or the earth itself (MW) or both (thermal).

[3]

Active Have their own source of energy.

In lidar, this source is optical. In radar, this source is MW.

Energy available to Passive MW sensors

Energy available to Passive MW sensors

Energy available to Passive MW sensors

5km FOV

50km FOV

Effect of changing field-of-view on image quality Influence of water on signal along coastline

Active v. Passive Precipitation Sensing TRMM (passive) microwave imager

Active v. Passive Precipitation Sensing TMI + TRMM Precipitation Radar

Active v Passive MW Sensors

Comparing Active and Passive Microwave Sensors

Passive Microwave Remote Sensing	Active Microwave Remote Sensing	
Sensor Examples		
AMSU-A & -B, MHS, AMSR-E, SSM/I/T1/T2, SSMIS, TRMM-TMI, WindSat, NPOESS MIS*, and ATMS	QuikSCAT, TRMM-PR, RADARSAT, MetOp ASCAT, CloudSat, U.S. Navy GFO, Jason-1 and 2, ERS-2 SCAT & SAR, Envisat ASAR, and RA-2	
Measurement Capabilities		
Sense emitted microwave energy from terrestrial sources	Send and receive electromagnetic pulses of energy	
Cloud and precipitation information from layers	Cloud and precipitation information from discrete levels	
Sea surface wind vectors (WindSat, MIS*), salinity	Sea surface wind vectors, salinity	
Precipitation (rain rate and snowfall)	Precipitation (rain rate, snowfalk cloud particles and profiling)	
Cloud properties (microphysics, cloud top and base)	Cloud properties (microphysics, cloud top, and base)	
Atmospheric temperature and moisture profiling	Not applicable for listed sensors	
Snow and sea ice coverage and extent, sea ice age	Snow and sea ice coverage and extent, river ice movement	
Snow cover characteristics	Snow cover characteristics	
Soil moisture / surface wetness	Soil moisture / surface wetness	
Vegetation water content, land surface temperature	Vegetation, biomass, land use, surface roughness, topography, and geology (SAR, SCAT, ASCAT, RADARSAT)	
Sea surface temperature	Ocean surface topography, sea surface state, heat storage and transfer (from radar altimeters)	

*NPOESS microwave imager/sounder capabilites TBD

A material that becomes polarized in an electric field is a "dielectric" material

Dielectric Constant

Fundamental parameter of natural materials, relating to its electrical properties:

It affects the reflective and emissive properties of a medium

High dielectric constant => more reflective => more surface scattering => Low emissivity!

Dielectric Constants for Various Materials

Common naturally occuring materials	Typical Dielectric Constants E'
Air, vacuum	1.00059, 1.0 (by definition)
Ice (fresh, sea)	3.2, 4-8
Snow (dry, wet)	1.3-1.6, 1.4-1.9
Permafrost	4-8
Water (fresh)	80 (20°C, <3 GHz), \downarrow 15-25 (~3 GHz) and decreasing with frequency
Sea water	78 (20°C, <3 GHz), decreasing with frequency
Sandy soil (dry, wet)	2.5-5, 15-30
Loamy soil (dry, wet)	4-6, 10-20
Clayey soil (dry, wet)	4-6, 10-15
Silts	5-30
Granite	4-6
Limestone	4-8
Salt	4-7

©The COMET Program

Dielectric Constants for Various Materials

Common naturally occuring materials	Typical Dielectric Constants E'
Air, vacuum	1.00059, 1.0 (by definition)
Ice (fresh, sea)	3.2, 4-8
Snow (dry, wet)	1.3-1.6, 1.4-1.9
Permafrost	4-8
Water (fresh)	80 (20°C, <3 GHz), \downarrow 15-25 (~3 GHz) and decreasing with frequency
Sea water	78 (20°C, <3 GHz), decreasing with frequency
Sandy soil (dry, wet)	2.5-5, 15-30
Loamy soil (dry, wet)	4-6, 10-20
Clayey soil (dry, wet)	4-6, 10-15
Silts	5-30
Granite	4-6
Limestone	4-8
Salt	4-7

©The COMET Program

Polarization

<image><section-header>

Polarization

Polarization

Introduction to Remote Sensing

Summary

- Microwave measurements can be made day/night regardless of cloudiness
- Differences in dielectric constant and hence emissivity allow us to measure surface properties
- Microwave sensors can be classified as active or passive

Passive microwave remote sensing Learning objectives

By the end of this section, you will be able to:

1) Explain emissivity and brightness temperature

- 2) List some data products derived from passive microwave remote sensing
- 3) Explain how soil moisture can be retrieved from brightness temperature measurements

Passive Microwave Remote-Sensing

Planck's Law: Spectral brightness (B_f)

$$B_{f} = \frac{2hf^{3}}{c^{2}} \frac{1}{e^{hf/kT} - 1}$$

Rayleigh-Jeans Approximation of Planck's Law

For low frequencies $\frac{hy}{1}$

$$\frac{hf}{kT} \ll 1$$

$$B_f = \frac{2f^2 kT}{c^2} \longrightarrow B_f \propto T$$

Passive Microwave Remote-Sensing

Blackbody = perfect absorber, perfect emitter (emissivity = 1)

All other materials are grey bodies (emissivity <1)

Brightness temperature

$T_B = e T$

 T_B is the temperature a blackbody would have to have the same brightness (at some frequency f) as a grey body with emissivity e and temperature T.

Passive Microwave Remote-Sensing Infrared v Microwave Temperature

=> Reflection, scattering
Passive Microwave Remote-Sensing

$$T_b = \rho T_s + e T_g$$
$$\equiv T_b = T_s + e (T_g - T_s)$$

Passive Microwave Remote-Sensing

Passive Microwave Remote-Sensing

Passive Microwave Remote-Sensing: Polar Mapping

Passive Microwave Remote-Sensing: Polar Mapping

Arctic perennial sea ice has been decreasing at a rate of 9% per decade.

Special Sensor Microwave Imager (SSMI). Credit: NASA

Tropical Rainfall Measuring Mission (NASA/NASDA)

Tropical Rainfall Measuring Mission (NASA/NASDA)

TRMM Microwave Imager (TMI)

Microwave Radiometer

Range of frequencies (10.7GHz, 19.4GHz, 21.3GHz, 37.0GHz, 85.5GHz)

=>Range of resolutions & penetration depths

•Measures *integrated column precipitation*

Tropical Rainfall Measuring Mission (NASA/NASDA)

TRMM Microwave Imager works best over oceans:

Tropical Rainfall Measuring Mission (NASA/NASDA)

Water surfaces

Dry atmosphere - blue moist atmosphere - dark blue

Land surfaces

Snow Cover - white/grey land (non-desert) - grey/brown Deserts - light green

Clouds/precipitation

Scattering (by cloud ice) - yellow Emission (over water) - black

Other Surfaces

Polar snow /ice- white/yellow Sea ice - green/brown

Impact of Cyclone Nargis

April 15, 2008 -Pegu -Bassein -Vangón Mouths of the Irrowaddy Mouths of the Irrowaddy Mouths of the Irrowaddy

http://earthobservatory.nasa.gov

Soil Moisture: Hydroclimatology

Seasonal prediction of precipitation Koster et al. (2004)

Duration and magnitude of heatwaves Fischer et al. (2007)

Agriculture

Water Resources Management

Power supply

Drought => Famine

Significant economic and societal impact

Soil Moisture Remote-Sensing Past Future

AMSR-E on Aqua

[5]

AMSR-E

Advanced Microwave Scanning Radiometer for the Earth Observing System

X-band (10.7GHz) , (C-band had too much RFI)

Effective resolution ~50km

SMMR

Scanning Multichannel Microwave Radiometer

C-band (6.6 GHz)

Effective resolution ~120km

Average surface soil moisture from (top) AMSR-E (June 2002–May 2006) and (bottom) SMMR (January 1979–August 1987). (Reichle et al. (JGR,2007))

SMOS: Why L-band?

Dielectric constant of water ${\cal E}=80$

Greater Δε between wet and dry at lower frequencies

 $\Delta \epsilon$ results in ΔT_B of ~100K

=> detectable!

SMOS: Why L-band?

FREQUENCY (GHz) 0.6 1.5 0.3 30 15 3 6 10.0 SOIL MOISTURE CONTENT (% VOL.) 1.0 10 PENETRATION DEPTH (meters) 20 0.1 0.01 L-Band 0.001 2 5 10 20 50 100 WAVELENGTH (centimeters)

Observe more of soil column

Can 'see' through denser vegetation

Microwave Remote-Sensing

 T_B , the brightness temperature from a vegetated surface:

 $T_B = T_s e_s \exp(-\tau) + T_c (1 - \omega)(1 - \exp(-\tau)) + T_c \rho_s \exp(-\tau)(1 - \omega)(1 - \exp(-\tau))$

 e_s is the soil emissivity, related to soil reflectivity by $(e_s=1-\rho_s)$

 T_s is the surface temperature (assume vegetation and soil temperatures are equal)

au is the vegetation opacity along the viewing path

 $\tau = \frac{bW}{\cos\theta}$

- θ is the incidence angle
- *b* is a vegetation coefficient depends on (frequency, vegetation type)
 W is the vegetation water content

 ω is the vegetation scattering albedo

 T_B , the brightness temperature from a vegetated surface:

 $T_B = T_s e_s \exp(-\tau) + T_c (1 - \omega)(1 - \exp(-\tau)) + T_c \rho_s \exp(-\tau)(1 - \omega)(1 - \exp(-\tau))$

 e_s is the soil emissivity, related to soil reflectivity by $(e_s=1-\rho_s)$ role of soil moisture

 T_s is the surface temperature (assume vegetation and soil temperatures are equal)

au is the vegetation opacity along the viewing path

 $\tau = \frac{bW}{\cos\theta}$

- θ is the incidence angle
- *b* is a vegetation coefficient depends on (frequency, vegetation type)
 W is the vegetation water content

 ω is the vegetation scattering albedo

 T_B , the brightness temperature from a vegetated surface:

 $T_B = \overline{T_s e_s \exp(-\tau) + T_c (1 - \omega)(1 - \exp(-\tau)) + T_c \rho_s \exp(-\tau)(1 - \omega)(1 - \exp(-\tau))}$

 e_s is the soil emissivity, related to soil reflectivity by $(e_s = 1 - \rho_s)$ role of soil moisture

 $e_s = e_s$ (dielectric constant, incidence angle)

dielectric constant is a strong function of soil moisture

SMOS Retrieval

Fig. 2. Dielectric constant as a function of volumetric soil moisture for five soils at 1.4 GHz. Smooth curves were drawn through measured data points. (From Ulaby et al. (1986). Reproduced with permission, *Microwave Remote Sensing: Active and Passive, Vol. III: From Theory to Applications*, by Fawwaz T. Ulaby, Richard K. Moore, Adrian K. Fung. © 1986, Artech House, Inc., Norwood, MA.)

Need to account for differences in: 1) soil texture 2) roughness 3) vegetation

SMOS mission

Launched

2 November 2009

Duration	Minimum 3 years
Frequency	L-band (21 cm-1.4 GHz
Spatial resolution	35 km at centre of FOV
Radiometric resolution	0.8 - 2.2 K
Angular range	0-55 degrees
Temporal resolution	3 days revisit at Equato

Sun-synchronous, dawn/dusk, at altitude 758 km. 06.00 hrs local solar time at ascending node.

SMOS mission

"Very Large Array", New Mexico

MIRAS instrument, SMOS

[11]

SMOS mission

Blue = low, Red = high brightness temperature

BBC, 17th August 2010

"SMOS satellite tracks Pakistan floods"

http://www.bbc.co.uk/news/science-environment-10991541

BBC, 9th May 2011

"Soils of UK and Europe drying out"

http://www.bbc.co.uk/news/science-environment-13338174

BBC, 9th May 2011

"Soils of UK and Europe drying out"

http://www.bbc.co.uk/news/science-environment-13338174

Next Step: Combined Active and Passive

SMAP Soil Moisture Active-Passive Mission

http://smap.jpl.nasa.gov/

NASA Launch date: 2014< Revisit time: 2-3 days Observations: 40km Radiometer 1.4GHz (H+V) 3km Radar (1.26 H GHz, 1.29 V GHz)

SMOS Soil Moisture & Ocean Salinity Mission

ESA

Launch date: November 2009 Revisit time: 2-3 days Observations: 35km Radiometer 1.4GHz (H+V)

http://www.esa.int/esaLP/LPsmos.html

Passive Microwave Remote Sensing Summary

Passive MW sensors measure brightness temperature.

At MW frequencies, $T_b < T_{physical}$, depending on emissivity.

Microwave emissivity varies considerably by surface type and condition, => passive microwave remote sensing has many applications including polar mapping, and measuring precipitation and soil moisture.

Active Microwave Remote Sensing

Learning objectives

By the end of this section, you will be able to:

1) Explain the difference between the main types of active MW sensors

2) List examples of each of the sensor types

3) Describe how active microwave remote sensing can used to estimate water levels, soil moisture and address many problems in water resources management

Remote-sensing techniques

Passive Employ natural sources of energy,

e.g. the sun (optical) or the earth itself (MW).

Active Have their own source of energy.

In lasers, this source is optical. In radar, this source is MW.

Active Microwave Sensor types

Non-imaging radar sensors

Take measurements in one linear dimension.

Examples: 1) radar altimeters (measure distance)

2) scatterometers (measure surface properties)

Imaging radar sensors

Take two-dimensional measurements.

Examples: 1) Real aperture radar (RAR)

2) Synthetic aperture radar (SAR)

Components of a radar system

Transmitter:

<u>Generates</u> the microwave signal, and <u>transmits</u> it to the antenna

Receiver: <u>Accepts</u> the backscattered signal from the antenna, <u>filters and</u> <u>amplifies</u> it as required by the recorder.

Antenna:

The microwave signals from the transmitter are bundled into a *beam*.

The antenna then <u>emits</u> the signal in a beam towards the Earth's surface, and <u>receives</u> the backscattered signal from the Earth's surface.

Recorder: <u>Stores</u> the received signal

RADAR – Radio Detection And Ranging.

Radar techniques were originally developed for military applications.

Surface search radar display found on ships

Radar tower Heathrow airport
Radar Ranging

Developed during WWII, to track incoming aircraft.

If a short microwave pulse is transmitted towards and reflected by a target, the distance *R* to the target is given by:

$$R = \frac{ct}{2}$$

where

- *c* is the speed of light in the medium
- *t* is the time taken for the signal to reach the target and return to the transmitter.

Radar Altimetry

h

Altimeters use ranging to measure surface topography

$$h = \frac{ct}{2}$$

c is the speed of light in the medium

t is the time delay between transmitted and received signals

The accuracy with which the distance can be measured is given by:

$$\Delta h = \frac{c\,\tau}{2} = \frac{c}{2B}$$

where B is the bandwidth of the pulse,

 $B = \frac{1}{\tau}$

Some radar altimetry missions

Mission	Agency	Launch	Altitude (km)	Frequency	Revisit Time (days)	Inclination	Error Budget Range	Error Budget Orbit
Past								
Geosat	US Navy	1985	800	Ku	17	108	4cm	30-50cm
ERS-1	ESA	1991	785	Ku	35	98.5	3cm	8-15cm
Topex- Poseidon	NASA	1992	1336	Ku, C	10	66	2cm	2-3cm
Current								
ERS-2	ESA	1995	785	Ku	35	98.5	3cm	7-8cm
GFO	NOAA/ US Navy	1998	800	Ku	17	108	3-5cm	?
Jason-1	CNES/ NASA	2001	1336	Ku,C	10	66	2cm	2-3cm
Envisat	ESA	2002	800	Ku,S	35	98.5	2-3cm	2-3cm

(*Ku*=13.6*GHz*, *C*=5.3*GHz*, *Ka*=35*GHz*)

Mean sea level observations

Mean Sea Level trends computed from altimetry, from January 1993 to 2005.

(Source: <u>Legos/CNRS</u>, France)

Mean Sea Level variation computed from altimetry

(Source: http://sealevel.colorado.edu)

Leuliette, E. W, R. S. Nerem, and G. T. Mitchum, 2004. Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. *Marine Geodesy*, **27**(1-2), 79-94.

Sea surface height anomalies

Tropical Cyclonic Heat Potential computed from altimetry on 28 August 2005, with Hurricane Katrina's trajectory and intensity overlaid.

Katrina's intensification seems to coincide with its crossing over the Loop Current.

(Credits <u>NOAA/AOML</u>)

Hurricane Katrina

Lake level monitoring

Lake VictoriaBorders Kenya, Uganda, Tanzania

•Food, transport, energy for 30 million people

•3rd largest lake in the world

•Surface Area 68,870 km2

•Mean depth: 40.0 m

Lake level data from the TOPEX-Poseidon and Jason-1 satellites (red) augment gauge data at Jinja, Uganda (black). (Graph by Robert Simmon, based on data provided by the USDA Foreign Agricultural Service.)

Source: earthobservatory.nasa.gov

River level monitoring

Topex/Poseidon track 63 shown in the area of the Amazon and Rio Negro rivers in the upper Amazon basin.

Water level time series in the Amazon for Topex/Poseidon track 63 (3.21°S-3.14°S), in metres. In-situ data from the Manaus station are shown as dots.

Land and Ice Sheet Topography

Challenges over land:

- 1) Loss of track
- 2) Slope-induced error

Elevation map of Antarctic Ice Sheet from ERS-1 data (http://www.legos.obs-mip.fr)

Non-Imaging Radar: Scatterometers Scatterometry:

Measures the properties of surfaces (e.g. land and ocean) and volumes (vegetation canopy) based on backscattering cross-section of the surface area illuminated by the antenna.

Originally developed to map wind speed and direction over oceans.

Over land, scatterometry can tell us about soil moisture content, roughness and texture, as well as vegetation structure.

Wind directions and velocities over the ocean as from QuikSCAT (NASA JPL)

σ

R

A is the area of the antenna, η is its efficiency.

Geometry & Surface Characteristics

is the backscatter cross section

is the range (distance) from the sensor to the object.

Backscatter cross section, σ

Backscatter cross section, σ

Two types of scattering:

- Surface scattering
- Volume scattering

Moisture content

Source:CCRS

Roughness

λ (m)

Geometry - Local Incidence Angle

Geometry - Local Incidence Angle

Geometry - Local Incidence Angle

Scattering of energy within a medium/ volume

Effect on backscatter cross-section depends on amount scattered towards antenna

Dielectric Constant

Fundamental parameter of natural materials, relating to its electrical properties:

$$\mathcal{E} = \mathcal{E}' + j\mathcal{E}''$$

Real component aka "dielectric constant"

Imaginary component aka "lossy component"

It affects the reflective and emissive properties of a medium

High dielectric constant => reflective => more surface scattering

Fig. E.52 Measured dielectric constant as a function of volumetric moisture content for a loamy soil at four microwave frequencies.

Penetration Depth

Depth at which power of wave is reduced to 1/e times its original value.

 $L_p = \frac{\lambda \sqrt{\mathcal{E}'}}{2\pi \mathcal{E}''}$

Higher penetration depth: Pure ice, older sea ice, dry soil

Wetter soils more reflective, lower penetration depth.

Required penetration depth determines design $\widehat{\mathcal{A}}$

Polarization

Polarization

Backscatter cross section, σ

Two types of scattering:

- Surface scattering
- Volume scattering

Moisture content

Scatterometry: SeaWinds on Quikscat

Polar orbiting, sun synchronous, altitude 803km

1800km swath

Pencil beam antenna, two beams

Frequency 13.4GHz

Wind speed and direction

Resolution 25km

Wind speed accuracy 3-20ms⁻¹ ±2ms⁻¹

http://winds.jpl.nasa.gov/

QS_XWGRD3_2005241.20062790217

Scatterometry: SeaWinds on Quikscat

Hurricane Katrina (Category 4) Quikscat, August 29, 2005

Intensity of storm makes accurate measurements difficult.

Barbs show wind direction

White barbs=heavy rainfall

Image Credit: NASA JPL

Scatterometry: Soil Moisture

Wind scatterometers:

ERS-1, ERS-2 (1991-present)

MetOp satellites (2006-2020)

Backscatter measurements

Global soil moisture (25-50km) (surface soil degree of saturation, Soil water index (profile))

http://www.ipf.tuwien.ac.at/

Scatterometry: Soil Moisture

Figure 3. Time series of mean temperature, precipitation, and $\sigma^0(40)$ for the station Simferopol (33.98°E, 45.02°N) for the period October 1995 to September 1997. In the bottom figure the backscattering coefficient of a dry and wet surface, $\sigma^0_{drg}(40,t)$ and $\sigma^0_{wet}(40)$ are indicated by dashed lines.

Wagner et al. (1999)

Scatterometry: Soil Moisture

Surface soil degree of saturation (SSDS):

$$m_{s}(t) = \frac{\sigma^{0}(40,t) - \sigma^{0}_{dry}(40,t)}{\sigma^{0}_{wet}(40,t) - \sigma^{0}_{dry}(40,t)}$$

Soil Water Index (SWI):

$$SWI(t) = \frac{\sum_{i} m_{s}(t_{i})e^{-(t-t_{i})/T}}{\sum_{i} e^{-(t-t_{i})/T}}$$

http://www.ipf.tuwien.ac.at/

Imaging Radar: Real Aperture Radar

aka Side-looking radars (SLR) or side-looking airborne radars (SLAR)

Resolution

Range (Across-track dimension)

 $R_r = \frac{ct_p}{2\sin\theta}$

Azimuth (Along-track dimension)

Azimuth resolution proportional to height => limited use in spaceborne systems

c= speed of light t_p = length of radar pulse L = antenna length H=altitude θ = incidence angle

Imaging Radar: Synthetic Aperture Radar

Uses relative motion of platform to simulate a longer aperture (antenna).

Target is illuminated by several pulses.

Range is different for each pulse

 \Rightarrow phase is different for each pulse

 \Rightarrow Doppler effect

Use signal processing to account for difference in phase

Synthetic array increases azimuth resolution:

$$R_a \approx \frac{L}{2}$$

Independent of altitude!

Imaging Radar: Slant-range distortion

On the ground |A1| = |B1|

In radar image |A2|<<|B2|

Solution: Trigonometry!

Source: CCRS

Imaging Radar: Relief displacement

Foreshortening

Radar Shadow

Source: CCRS

Imaging Radar: Speckle (SAR)

Source: CCRS

SAR Applications: ASAR

Agency: ESA Platform: Envisat C-band, 5 polarization modes Spatial Resolution:

Image, wave and alternating polarization modes: 30m

Wide Swath Mode: 150m

Global monitoring model : 1000m

Swath width:

Image and alternating polarisation modes: up to 100km Wave mode: 5km,

Wide swath and global monitoring modes: 400km or more
SAR Applications: ASAR

Oceans & Coast

Wave Characteristics Ocean Fronts Coastal Dynamics Oil Slicks and ShipTraffic

Land

Global Vegetation Monitoring Forestry Geology and Topography Agriculture Flooding, Hydrology and Water Management Urban Studies

Natural Disasters

Volcanic activity Earthquakes Land subsidence

Snow and Ice

monitoring the ice extent and the boundaries of ice sheets mapping the motion of ice sheets and glaciers sea ice mapping & navigation snow cover

SAR Applications: ASAR

Envisat ASAR Image mode \Rightarrow resolution of 12.5 m.

Agriculture Flooding, Hydrology Water Management Urban Studies

Source: ESA

Applications: ASAR Mapping flood extent

Composite of two ASAR images from 26 July 2007 (before) 12 April 2007(after).

Black and white = no change

Blue are potentially flooded spots.

Red may also indicate flooding, but could also be related to agricultural practices.

Source ESA

ASAR: Monitoring lake and wetland extent

Patchy waters of Poyang Lake, 29 December 2005.

One of China's most important rice-producing regions.

Challenges: Massive seasonal changes in water level, Regular severe floods.

Shrinks from 3500km to 1000km in dry season.

Wetlands significant for migrating birds.

Alternating Polarisation (AP) mode = simultaneous acquisition of data in two radar polarisations to gather added detail. Resolution= 75 m, image width = 82.3 km.

Active Microwave Remote-Sensing

Summary:

In active MW remote sensing, a sensor transmits and receives a signal.

We can measure how long it takes for the signal to return = Altimetry. Information on surface topography.

We can look at the change in the signal (backscatter) and infer information about the surface properties

Assignment 6: Soil Moisture Retrieval from Active MW Remote Sensing

Analyze soil moisture products derived from ERS Wind Scatterometer data

Issue to consider: Revisit time, change detection approach

What can we resolve given this revisit time? Individual storms? Seasonal cycle?

⇒ What kinds of applications is this data product useful for? What applications need more frequent observations?

 \Rightarrow Potential sources of uncertainty

Wind scatterometers:

ERS-1, ERS-2 (1991-present)

MetOp satellites (2006-2020)

Backscatter measurements

Global soil moisture (25-50km) (surface soil degree of saturation, Soil water index (profile))

http://www.ipf.tuwien.ac.at/

Figure 3. Time series of mean temperature, precipitation, and $\sigma^0(40)$ for the station Simferopol (33.98°E, 45.02°N) for the period October 1995 to September 1997. In the bottom figure the backscattering coefficient of a dry and wet surface, $\sigma^0_{dy}(40,t)$ and $\sigma^0_{wd}(40)$ are indicated by dashed lines.

Wagner et al. (1999)

aka Relative Surface Wetness

$$m_{s}(t) = \frac{\sigma^{0}(40,t) - \sigma^{0}_{dry}(40,t)}{\sigma^{0}_{wet}(40,t) - \sigma^{0}_{dry}(40,t)}$$

http://www.ipf.tuwien.ac.at/

aka Relative Surface Wetness

$$m_{s}(t) = \frac{\sigma^{0}(40,t) - \sigma^{0}_{dry}(40,t)}{\sigma^{0}_{wet}(40,t) - \sigma^{0}_{dry}(40,t)}$$

Sources images

[1] The Electromagnetic Spectrum, source: HyperPhysics Georgia State University, image courtesy of C.R. Nave

- [2] Atmospheric attenuation on the EM spectrum, source: ESA
- [3] Soil Moisture Ocean Salinity (SMOS) satellite, source: ESA
- [4] European Remote Sensing (ERS) satellite, source: ESA
- [5] Aqua satellite, source: NASA
- [6] Soil Moisture from ASCAT, source: TU Wien
- [7] Soil Moisture Active Passive (SMAP), source: NASA
- [8] Launch of SMOS satellite, source: ESA
- [9] Polar orbit, source: Creative Commons/Wikipedia
- [10] Very Large Array (VLA), Magdalena, New Mexico; photo courtesy of Richard Ryer
- [11] Very Large Array (VLA), Socorro, New Mexico; source: NRAO/AUI/NSF
- [12] The SMOS instrument, source: ESA
- [13] Radar during World War II, source: War History Online
- [14] Radar screen, source: Wikimedia Commons
- [15] Heathrow Airport radar tower, photo courtesy of David Monniaux
- [16] Synthetic Aperture Radar (SAR), source: Wikimedia Commons/Rcs ivan
- [17] Poyang Lake, China; source: redOrbit.com

