Bending Deflection Statically Indeterminate Beams

 AE1108-II: Aerospace Mechanics of MaterialsDr. Calvin Rans
Dr. Sofia Teixeira De Freitas

Recap

Procedure for Statically Indeterminate Problems

I. Free Body Diagram

II. Equilibrium of Forces (and Moments)
III. Displacement Compatibility
IV. Force-Displacement (Stress-Strain) Relations

Solve when number of equations = number of unknowns

V. Answer the Question! - Typically calculate desired internal stresses, relevant displacements, or failure criteria

> For bending, Force-Displacement relationships come from Moment-Curvature relationship
> (ie: use Method of Integration or Method of Superposition)

Statically Indeterminate Beams

Many more redundancies are possible for beams:

- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a compatibility equation

- 4 reactions
- 3 equilibrium equations
$4-3=1$
$1^{\text {st }}$ degree statically indeterminate

TUDelft

Statically Indeterminate Beams

Many more redundancies are possible for beams:

- Draw FBD and count number of redundancies
- Each redundancy gives rise to the need for a compatibility equation

- 6 reactions
- 3 equilibrium equations
$6-3=3$
3 ${ }^{\text {rd }}$ degree statically indeterminate

TUDelft

Solving statically indeterminate beams using method of integration

TUDelft

What is the difference between a support and a force?

Displacement Compatibility
(support places constraint on deformation)

Method of Integration

TUDelft

Method of Integration (cont)

TUD ${ }^{5}$ Ift

Method of Integration (cont)

$v\left(z, V_{B}\right)$ How to determine V_{B} ?

Compatibility $\mathrm{BC}: ~$ At $\mathrm{B}, \mathrm{v}=\mathrm{O} \longrightarrow$ Solve for V_{B}

Compatibility equations for beams are simply the boundary conditions at redundant supports

Example 1

Problem Statement

Determine deflection equation for the beam using method of integration:

Solution

2) Equilibrium:
$\sum \vec{F} \Rightarrow H_{A}=0$
$\sum F^{\dagger} \Rightarrow V_{A}+V_{B}=q L$
$\sum M_{A} \Rightarrow M_{A}=L V_{B}-\frac{q L^{2}}{2}=\frac{q L^{2}}{2}-L V_{A}$
Treat reaction forces as knowns!

Example 1

4) Determine moment equation:

$$
\begin{aligned}
\sum M_{z}^{c c w+} \Rightarrow M & =M_{A}+V_{A} z-(q z) \frac{z}{2} \\
& =M_{A}+V_{A} z-\frac{q}{2} z^{2}
\end{aligned}
$$

Can also use step function approach

$$
M=\overbrace{M_{A}[z-0]^{0}+V_{A}[z-0]-\frac{q}{2}[z-0]^{2}+V_{B}[z-L]}^{\text {always off }}
$$

Example 1

5) Integrate Moment equation to get

$\int-E I v^{\prime \prime}=M_{A}+V_{A} z-\frac{q}{2} z^{2}=\mathrm{M}(\mathrm{z})$

$$
\begin{aligned}
& -E I v^{\prime}=M_{A} z+\frac{V_{A}}{2} z^{2}-\frac{q}{6} z^{3}+C_{1}=-\operatorname{EI} \theta(z) \\
& -E I v=\frac{M_{A}}{2} z^{2}+\frac{V_{A}}{6} z^{3}-\frac{q}{24} z^{4}+C_{1} z+C_{2}=-\operatorname{EIv}(z)
\end{aligned}
$$

We now have expressions for v and v^{\prime}, but need to determine constants of integration and unknown reactions

Example 1

5a) Solve for Constants of Integration using $B C$'s:

$$
-E I v^{\prime}=M_{A} z+\frac{V_{A}}{2} z^{2}-\frac{q}{6} z^{3}+\not_{1}^{0}=-E I \theta(z)
$$

$-E I v=\frac{M_{A}}{2} z^{2}+\frac{V_{A}}{6} z^{3}-\frac{q}{24} z^{4}+\not \varnothing_{1}^{0} z+C_{2}=-E \operatorname{Iv}(z)$

Boundary Conditions:

$$
\begin{gathered}
\text { At } \mathrm{z}=\mathrm{o}, \theta=\mathrm{o} \quad \Rightarrow-E I(0)=-\frac{q}{6}(0)^{3}+\frac{V_{A}}{2}(0)^{2}+M_{A}(0)+C_{1} \\
\therefore C_{1}=0
\end{gathered}
$$

Example 1

5a) Solve for Constants of Integration
 using $B C$'s:

$$
-E I v^{\prime}=M_{A} z+\frac{V_{A}}{2} z^{2}-\frac{q}{6} z^{3}+\not_{1}^{\prime 0}=-E I \theta(z)
$$

Fixed support
$-E I v=\frac{M_{A}}{2} z^{2}+\frac{V_{A}}{6} z^{3}-\frac{q}{24} z^{4}+\not \mathscr{C}_{1}^{0} z+\mathscr{C}_{2}^{0}=-\operatorname{EIv}(z)$

$$
\theta=\mathrm{o}, \mathrm{v}=\mathrm{o}
$$

Boundary Conditions:

$$
\text { At } \mathrm{z}=\mathrm{o}, \mathrm{v}=\mathrm{o} \quad \Rightarrow-E I(0)=-\frac{q}{24}(0)^{4}+\frac{V_{A}}{6}(0)^{3}+\frac{M_{A}}{2}(0)^{2}+C_{2}
$$

$$
\therefore C_{2}=0
$$

Example 1

5b) Solve for Reaction Forces using BC's (imposed by redundant support):

$$
\begin{aligned}
& -E I v^{\prime}=M_{A} z+\frac{V_{A}}{2} z^{2}-\frac{q}{6} z^{3}=-\operatorname{EI\theta }(z) \\
& -E I v=\frac{M_{A}}{2} z^{2}+\frac{V_{A}}{6} z^{3}-\frac{q}{24} z^{4}=-\operatorname{EIv}(z)
\end{aligned}
$$

roller support

$$
\mathrm{v}=\mathrm{o}
$$

Boundary Conditions:

$$
\begin{aligned}
\text { At } \mathrm{z}=\mathrm{L}, \mathrm{v} & =\mathrm{o} \quad \Rightarrow-E I(0)=-\frac{q}{24}(L)^{4}+\frac{V_{A}}{6}(L)^{3}+\frac{M_{A}}{2}(L)^{2} \\
V_{A} & =\frac{q L}{4}-\frac{3 M_{A}}{L} \quad M_{A}=\frac{q L^{2}}{2}-L V_{A} \quad V_{B}=q L-V_{A}
\end{aligned}
$$

Example 1

5b) Solve for Reaction Forces using

$$
V_{A}=\frac{q L}{4}-\frac{3 M_{A}}{L}, \quad M_{A}=\frac{q L^{2}}{2}-L V_{A}, \quad V_{B}=q L-V_{A}
$$

$$
V_{A}=\frac{5}{8} q L
$$

$$
M_{A}=-\frac{q L^{2}}{8}
$$

$$
V_{B}=\frac{3}{8} q L
$$

Example 1

We were asked to determine deflection equation:

$$
\begin{aligned}
& -E I v=\frac{M_{A}}{2} z^{2}+\frac{V_{A}}{6} z^{3}-\frac{q}{24} z^{4} \\
& v=\frac{q z^{2}}{48 E I}\left(3 L^{2}-5 L z+2 z^{2}\right)
\end{aligned}
$$

Max Displacement:

$$
\begin{aligned}
& v^{\prime}=\frac{q}{48 E I}\left(6 L^{2} z-15 L z^{2}+8 z^{3}\right)=0 \quad \Rightarrow z \approx 0.5785 L \\
& v(0.5785 L)=0.005416 \frac{q L^{2}}{E I}
\end{aligned}
$$

Example 1

Now that the reactions are known:

$$
\begin{aligned}
M(z) & =-E I v^{\prime \prime}=M_{A}+V_{A} z-\frac{q}{2} z^{2} \\
& =-\frac{q L^{2}}{8}+\frac{5 q L z}{8}-\frac{q z^{2}}{2} \\
V(z) & =-E I v^{\prime \prime \prime}=\frac{5 q L}{8}-q z
\end{aligned}
$$

Solving statically indeterminate beams using superposition

TUD ${ }^{5}$ Ift

Method of Superposition

Determine reaction forces:

2) Equilibrium:
$\sum \vec{F} \Rightarrow H_{A}=0$
$\sum F^{\uparrow} \Rightarrow V_{A}+V_{B}=P$

- 4 reactions
- 3 equilibrium equations
$1^{\text {st }}$ degree statically indeterminate
$\sum M_{A} \Rightarrow 3 L V_{B}=2 L P+M_{A}$
TUD ${ }^{5}$ Ift

Method of Superposition (cont)

How do we get compatibility equation?

Split into two statically determinate problems

TUODelft

Method of Superposition (cont)

How do we get Force-Displacement relations?
We have been doing this in the previous lectures

Integrate Moment Curvature Relation

$$
M=-E I \frac{d^{2} v}{d z^{2}} \quad \begin{gathered}
\text { Can integrate } \\
\text { to find } v
\end{gathered}
$$

Standard Case Solutions

$$
\stackrel{+}{\theta_{B}^{+}}=\frac{P L^{2}}{2 E I} \quad \stackrel{\downarrow+}{v_{B}}=\frac{P L^{3}}{3 E I}
$$

Method of Superposition (cont)

From the standard case:
4) Force-Displacement:

$$
\theta_{P}=\frac{P(2 L)^{2}}{2 E I}=\frac{2 P L^{2}}{E I}
$$

$$
v_{B 1}=v_{P}+\theta_{P} \cdot L
$$

$$
=\frac{P(2 L)^{3}}{3 E I}+\frac{2 P L^{2}}{E I} \cdot L
$$

$$
=\frac{14 P L^{3}}{3 E I}
$$

Method of Superposition (cont)

TUD ${ }^{T}$ Ift

Additional remarks about bending deflections

TUD ${ }^{5}$ Ift

Remarks about Beam Deflections

Bending Deformation $=$ Shear Deformation + Moment Deformation THDelft

Remarks about Beam Deflections

THDelft

Remark about Beam Deflections

For bending deformation problems

negligible

Deformation $=$ Axialmanation + Shearmation + Moment Deformation

BUT!
If moment deformation is not present, deformation is not negligible

TUD ${ }^{T}$ Ift

Example 2

Calculate reaction forces at A and D:

First, can we see any simplifications?

Symmetry!

Symmetry implies:

- Reactions at A = reactions at D
- Slope at symmetry plane $=0$
- Shear force at symmetry plane $=0$

We will solve using superposition and standard cases

Example 2

Calculate reaction forces:
2) Equilibrium

$$
\begin{aligned}
& \sum \vec{F} \Rightarrow H_{A}=-H_{F} \\
& \sum F^{\uparrow+} \Rightarrow V_{A}=\frac{q L}{2} \\
& \sum M_{A}^{c c \omega+} \Rightarrow M_{A}+\frac{q L^{2}}{8}+H_{F} L=M_{F}
\end{aligned}
$$

Split problem into two: beam AB and beam BF

Example 2

Calculate reaction forces:
3) Compatibility

$$
\theta_{F}=0, \underbrace{\mathrm{~V}_{B}=0} \text { (axial deformation negligible) }
$$

Example 2

4a) Force-Displacement for Beam $A B$

$\overrightarrow{v_{B}^{+}}=\frac{H_{F} L^{3}}{3 E I}$
$\theta_{B}^{c w+}=\frac{H_{F} L^{2}}{2 E I}$
TUDelft

$$
\vec{v}_{B}^{+}=-\frac{M_{F} L^{2}}{2 E I}+\frac{q L^{4}}{16 E I}
$$

$$
\theta_{B}^{c \text { c+ }}=-\frac{M_{F} L}{E I}+\frac{q L^{3}}{8 E I}
$$

Example 2

4a) Force-Displacement for Beam $A B$

$$
\begin{aligned}
& \vec{v}_{B}^{+}=\frac{H_{F} L^{3}}{3 E I}-\frac{M_{F} L^{2}}{2 E I}+\frac{q L^{4}}{16 E I}=0 \\
& \theta_{B}^{c w+}=\frac{H_{F} L^{2}}{2 E I}-\frac{M_{F} L}{E I}+\frac{q L^{3}}{8 E I}
\end{aligned}
$$

Recall compatibility:
Still need $\theta_{\mathrm{F}} \longrightarrow \theta_{\mathrm{F}}=0, \quad \mathrm{v}_{B}=0$

Example 2

4b) Force-Displacement for Beam BF

$+$

$\theta_{F}=0$

$$
\theta_{F}^{\text {ew+ }}=-\frac{M_{F} L}{E I}
$$

$$
\theta_{F}^{c w+}=\frac{q L^{3}}{48 E I}-\frac{M_{F} L}{E I} \quad \text { Wait! Not entirely correct! }
$$

Example 2

Previous angle relative to fixed support B

$$
\begin{aligned}
\theta_{F}^{c w+} & =\frac{q L^{3}}{48 E I}-\frac{M_{F} L}{E I}+\theta_{B} \\
\theta_{F}^{c w+} & =\frac{7 q L^{3}}{48 E I}-\frac{2 M_{F} L}{E I}+\frac{H_{F} L^{2}}{2 E I}=0
\end{aligned}
$$

Example 2

Recall equilibrium:

Solve:

$$
\begin{aligned}
& \sum \overrightarrow{F+} \Rightarrow H_{A}=-H_{F} \\
& \sum F^{\uparrow+} \Rightarrow V_{A}=\frac{q L}{2}
\end{aligned}
$$

Recall compatibility:
$\theta_{F}=0, \quad \mathrm{v}_{B}=0$

$$
\sum M_{A}^{c c w+} \Rightarrow M_{A}+\frac{q L^{2}}{8}+H_{F} L=M_{F}
$$

$$
\begin{aligned}
& \theta_{F}^{c w+}=\frac{7 q L^{3}}{48 E I}-\frac{2 M_{F} L}{E I}+\frac{H_{F} L^{2}}{2 E I}=0 \\
& \vec{v}_{B}^{+}=\frac{H_{F} L^{3}}{3 E I}-\frac{M_{F} L^{2}}{2 E I}+\frac{q L^{4}}{16 E I}=0
\end{aligned}
$$

$$
\begin{array}{ll}
H_{F}=-\frac{q L}{8} & H_{A}=\frac{q L}{8} \\
M_{F}=\frac{q L^{2}}{24} & M_{A}=-\frac{2 q L^{2}}{3}
\end{array}
$$

Example 2

$$
\begin{aligned}
& H_{F}=-\frac{q L}{8} \\
& M_{F}=\frac{q L^{2}}{24} \\
& H_{A}=\frac{q L}{8} \\
& V_{A}=\frac{q L}{2} \\
& M_{A}=-\frac{2 q L^{2}}{3}
\end{aligned}
$$

For next time

	First Lecture		Second Lecture		coz		Instruction
Week	Topics	Preparation	Topics	Preparation	Assignment	Due Date	Activity
3.1	Introduction	None	Stress, Strain, Hooke's Law	L.U. 1 (all)	none	none	no Instruction
3.2	Axial loading and static indetermenacy	L.U. 2 (all)	Torsion of circular shafts	L.U. 3.1-3.2	coz1	18/02/2016	Mock exam 1
3.3	Torsion of thin-walled shafts	L.U. 3.3	Bending stresses in beams	L.U. 4 (all)	COZ2	25/02/2016	Peer grading 1
3.4	Transverse shear stresces in heams	L.U. 5.1	Shear stresses in thinwalled heams	L.U. 5.2	coz3	03/03/2016	Mock exam 2
3.5	Combined loading	L.U. 6 (all)	Stress transformations \& Failure criteria	L.U. 7 (all)	coz4	10/03/2016	Peer Grading 2
3.6	Eeam deflections by integration	L.U. 8.1	Discontinuity functions and	L.U. 8.2-8.3	COZ5	17/03/2016	Mock exam 3
3.7	statıcally indeterminate beams	L.U. B.	keview	None	COZ6	24/03/2016	Peer grading 3
3.8	Study for Exam						
3.9	ExamII - Fidday April 8 th@ 13:30						

L.U. = Learning unit 'refer to blackboard site for learning units)

TUDelft

