Fluid mechanics (wb1225)

Lecture 12: compressible flow

Example

Pressure wave

conservation of mass (continuity): $\rho AC = (\rho + \Delta \rho)A(C - \Delta V) \implies \Delta V = C \frac{\Delta \rho}{\rho + \Delta \rho}$

momentum balance:

 $F = \dot{m} (V_{out} - V_{in}) \implies pA - (p + \Delta p)A = (\rho A C)(C - \Delta V - C) \implies \Delta p = \rho C \Delta V$ combine:

$$C^{2} = \frac{\Delta p}{\Delta \rho} \left(1 + \frac{\Delta \rho}{\rho} \right) \xrightarrow{\Delta \rho / \rho \to 0} a^{2} = \frac{\partial p}{\partial \rho} \Big|_{s} = kRT \begin{cases} p = \rho RT & \text{ideal gas} \\ p \rho^{-k} = \text{const} & \text{adiab. proc.} \end{cases}$$

Adiabatic gas flow

Delft

Adiabatic gas flow

Fluid Mechanics – Lecture 12 5

One-dimensional isentropic flow

continuity:

$$\dot{m} = \rho(x)V(x)A(x) = \text{const.}$$

$$\frac{d\rho}{\rho} + \frac{dV}{V} + \frac{dA}{A} = 0$$

momentum:
$$\frac{dp}{\rho} + VdV = 0$$

sound: $dp = a^2 d\rho$

$$\frac{dV}{V} = \frac{dA}{A} \frac{1}{Ma^2 - 1} = -\frac{dp}{\rho V^2}$$

One-dimensional isentropic flow

Sonic flow through a nozzle

Ideal gas flow

 $\rho VA = \rho^* V^* A^*$ (sonic conditions, Ma = 1) $\Rightarrow \frac{A}{A^*} = \frac{\rho^*}{\rho} \frac{V^*}{V}$

$$\frac{\rho^*}{\rho} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} = \frac{\left[1 + \frac{\kappa - 1}{2} \operatorname{Ma}^2\right]^{\frac{1}{\kappa - 1}}}{\left[1 + \frac{\kappa - 1}{2} \cdot 1^2\right]^{\frac{1}{\kappa - 1}}} = \left\{\frac{2}{\kappa + 1} \left[1 + \frac{\kappa - 1}{2} \operatorname{Ma}^2\right]\right\}^{\frac{1}{\kappa - 1}}$$
$$\frac{V^*}{V} = \frac{(\kappa RT^*)^{1/2}}{V} = \frac{(\kappa RT)^{1/2}}{V} \left(\frac{T^*}{T}\right)^{\frac{1}{2}} \left(\frac{T_0}{T}\right)^{\frac{1}{2}} = \frac{1}{\operatorname{Ma}} \left\{\frac{2}{\kappa + 1} \left[1 + \frac{\kappa - 1}{2} \operatorname{Ma}^2\right]\right\}^{\frac{1}{2}}$$

$$\frac{A}{A^*} = \frac{1}{Ma} \left[\frac{1 + \frac{1}{2}(\kappa - 1)Ma^2}{\frac{1}{2}(\kappa + 1)} \right]^{\frac{1}{2}\frac{\kappa + 1}{\kappa - 1}}$$

Choking

Example 9.4

Air flows isentropically through a duct. At (1) the area is 0.05 m² and V₁ = 180 m/s, $p_1 = 500$ kPa, and $T_1 = 470$ K. Compute (a) T_0 , (b) Ma₁, (c) p_0 , and (d) both A^{*} and \dot{m} . If at (2) the area is 0.036 m², compute Ma₂ and p_2 for (e) subsonic and (f) supersonic flow. Assume $\kappa = 1.4$.

Normal shock wave

SA

continuity:

$$A_1 \approx A_2$$

 $\rho_1 V_1 = \rho_2 V_2 = \text{const.}$

momentum:

$$p_1 - p_2 = \rho_2 V_2^2 - \rho_1 V_1^2$$

energy:

$$h_1 + \frac{1}{2}\rho_1 V_1^2 = h_2 + \frac{1}{2}\rho_2 V_2^2 = h_0 = \text{const.}$$

ideal gas law:

$$\frac{p_1}{\rho_1 T_1} = \frac{p_2}{\rho_2 T_2} \quad h = c_p T \quad \kappa = \text{const.}$$

Rankine-Hugeniot relations

eliminate V_1 and V_2 :

$$h_2 - h_1 = \frac{1}{2}(p_2 - p_1)\left(\frac{1}{\rho_2} + \frac{1}{\rho_1}\right)$$

introduce ideal gas law:

$$\frac{\rho_2}{\rho_1} = \frac{1 + \beta p_2 / p_1}{\beta + p_2 / p_1}, \quad \beta = \frac{\kappa + 1}{\kappa - 1}$$

entropy change accross shock:

$$s_2 - s_1 = c_v \ln\left[\frac{p_2}{p_1}\left(\frac{\rho_1}{\rho_2}\right)^{\kappa}\right]$$

2nd Law of Thermodynamics:

$$s_2 \ge s_1 \implies \begin{cases} p_2 \ge p_1 \\ \rho_2 \ge \rho_1 \end{cases}$$

isentropic flow (Poisson relation):

$$\frac{\rho_2}{\rho_1} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{\kappa}}$$

$\frac{p_2}{p_1}$	ρ_2/ρ_1		$s_2 - s_1$
	Eq. (9.51)	Isentropic	c_v
0.5	0.6154	0.6095	-0.0134
0.9	0.9275	0.9275	-0.00005
1.0	1.0	1.0	0.0
1.1	1.00704	1.00705	0.00004
1.5	1.3333	1.3359	0.0027
2.0	1.6250	1.6407	0.0134

Summary

- Ma₁>1, Ma₂<1
- ρ₂ > ρ₁
- s₂ > s₁, A₂^{*} > A₁^{*}
- weak shocks are nearly isentropic

Example 9.8

A converging nozzle has a throat area of 6 cm² and stagnation air conditions of 120 kPa and 400 K. Compute the exit pressure and mass flow if the back pressure is (a) 90 kPa and (b) 45 kPa. Assume $\kappa = 1.4$.

1. An F/A-18 Hornet photographed just as it broke the sound barrier, photo courtesy of Ensign John Gay, USS Constellation, US Navy,

The rest of the pictures are from the book of Frank M. White, *Fluid Mechanics*, McGraw-Hill Series in Mechanical Engineering.

