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Fluid mechanics
(wb1225)

Lecture 12:
compressible flow
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Example

[1]
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Pressure wave

 

conservation of mass (continuity): ρAC = (ρ + ∆ρ)A(C − ∆V ) ⇒ ∆V = C
∆ρ

ρ + ∆ρ
momentum balance:

F = &m(Vout − Vin ) ⇒ pA − ( p + ∆p)A = (ρAC )(C − ∆V − C ) ⇒ ∆p = ρC∆V

combine:

C 2 =
∆p

∆ρ
1 +

∆ρ
ρ







∆ρ ρ → 0 →  a 2 =

∂p

∂ρ
S

= kRT
p = ρRT ideal gas

pρ − k = const adiab. proc.
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Adiabatic gas flow
streamtube

h1 p1

T1 ρ1

h2 p2

T2 ρ2

Conservation of energy for stationary 
flow under adiabatic conditions and
without technical work:
- no heat transfer
- effect of viscosity occurs where V = 0 

(no technical work)

h1 + 1
2 V1

2 + gz1 = h2 + 1
2 V2

2 + gz2

h = c pT

ideal gas
changes in potential energy 
are negligible

c pT + 1
2 V 2 = constant

1 +
κ − 1

2
Ma 2 =

T0

T

c pT + 1
2 V 2 = c pT0

a 2 = κ RT = κ − 1( )c pT






⇒

also valid in 
case of losses

Ma =
V

a
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Adiabatic gas flow

T0

T
= 1 +

κ − 1

2
Ma 2

p0

p
=

T0

T






κ
κ −1

= 1 +
κ − 1

2
Ma 2






κ
κ −1

ρ0

ρ
=

T0

T






1

κ −1
= 1 +

κ − 1

2
Ma 2






1

κ −1

κ = 1.4
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One-dimensional isentropic flow

 

continuity:

&m = ρ(x)V (x)A(x) = const. ⇒
dρ
ρ

+
dV

V
+

dA

A
= 0

momentum: 
dp

ρ
+ VdV = 0

sound: dp = a 2dρ

dV

V
=

dA

A

1

Ma 2 − 1
= −

dp

ρV 2
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One-dimensional isentropic flow
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Sonic flow through a nozzle
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Ideal gas flow
ρVA = ρ∗V ∗A∗ (sonic conditions, Ma = 1) ⇒

A

A∗ =
ρ∗

ρ
V ∗

V

ρ∗

ρ
=

ρ∗

ρ0

ρ0

ρ
=

1 + κ − 1
2

Ma 2






1

κ −1

1 + κ − 1
2

⋅12






1

κ −1

=
2

κ + 1
1 +

κ − 1

2
Ma 2













1

κ −1

V ∗

V
=

(κ RT ∗ )1 2

V
=

(κ RT )1 2

V

T ∗

T








1

2 T0

T






1

2
=

1

Ma

2

κ + 1
1 +

κ − 1

2
Ma 2













1

2

A

A∗ =
1

Ma

1 + 1
2 (κ − 1)Ma 2

1
2 (κ + 1)











1
2

κ +1

κ −1
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Choking

A

A∗ =
1

Ma

1 + 1
2 (κ − 1)Ma 2

1
2 (κ + 1)











1
2

κ +1

κ −1
κ = 1.4

 

ɺmmax = ρ∗A∗V ∗ = ρ0

2

κ − 1






1

κ −1
A∗ 2κ

κ + 1
RT0







1

2

= κ
1

2
2

κ + 1






1
2

κ +1

κ −1
A∗ρ0 (RT0 )

1

2
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Example 9.4
Air flows isentropically through a duct. At (1) the area is 0.05 m2 and V1 = 180 m/s,
p1 = 500 kPa, and T1 = 470 K. Compute (a) T0, (b) Ma1, (c) p0, and (d) both A* and

. If at (2) the area is 0.036 m2, compute Ma2 and p2 for (e) subsonic and (f) super-

sonic flow. Assume κ = 1.4.
 ɺm



12Fluid Mechanics – Lecture 12

Normal shock wave
continuity:

A1 ≈ A2

ρ1V1 = ρ2V2 = const.

momentum:

p1 − p2 = ρ2V2
2 − ρ1V1

2

energy:

h1 + 1
2 ρ1V1

2 = h2 + 1
2 ρ2V2

2 = h0 = const.

ideal gas law:

p1

ρ1T1

=
p2

ρ2T2

h = c pT κ = const.

~ 1 µm
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Rankine-Hugeniot relations
eliminate V1  and V2 :

h2 − h1 = 1
2 ( p2 − p1 )

1

ρ2

+
1

ρ1








introduce ideal gas law:

ρ2

ρ1

=
1 + β p2 p1

β + p2 p1

, β =
κ + 1

κ − 1

entropy change accross shock:

s2 − s1 = cv ln
p2

p1

ρ1

ρ2








κ













isentropic flow (Poisson relation):

ρ2

ρ1

=
p2

p1








1

κ

2nd Law of Thermodynamics:

s2 ≥ s1 ⇒
p2 ≥ p1

ρ2 ≥ ρ1
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Summary
• Ma1>1, Ma2<1

• ρ2 > ρ1

• s2 > s1, A2
* > A1

*

• weak shocks are nearly isentropic



15Fluid Mechanics – Lecture 12

Example 9.8
A converging nozzle has a throat area of 6 cm2 and stagnation air conditions of
120 kPa and 400 K. Compute the exit pressure and mass flow if the back 
pressure is (a) 90 kPa and (b) 45 kPa. Assume κ = 1.4.
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Source

1. An F/A-18 Hornet photographed just as it broke the sound barrier, photo courtesy of Ensign John Gay, USS Constellation, US Navy,

The rest of the pictures are from the book of Frank M. White, Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering.


