# Fluid mechanics (wb1225)

#### Lecture 7: dimensional analysis



# Hollywood





[1]



# Buckingham Π theorem

Principle of dimensional homogeneity (PDH): If an equation truly expresses a proper relationship between variables in a physical process, it will be dimensionally homogeneous; i.e. each of its additive terms will have the same dimensions

n

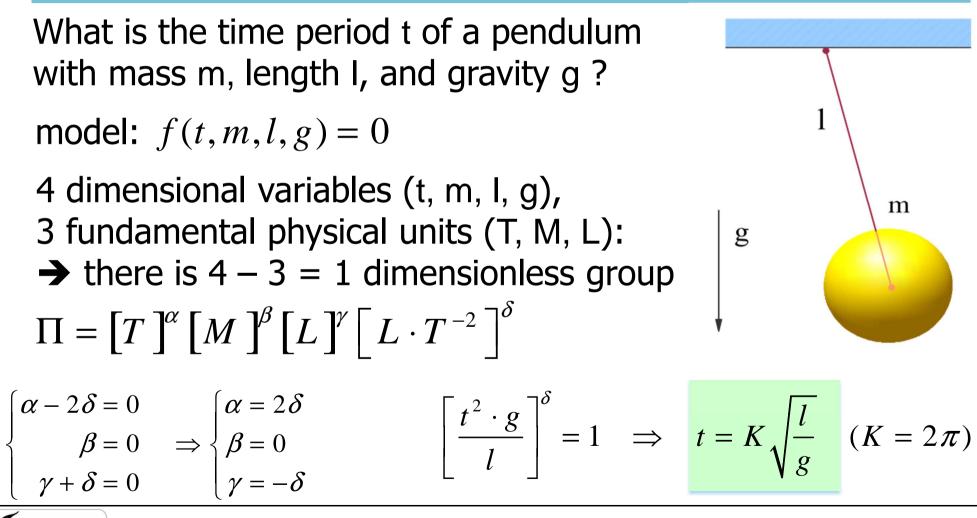
physical variables fundamental physical quantities  $\begin{cases} p = n - k & \text{dimensionless parameters} \end{cases}$ 

k

$$f(q_1, q_2, \mathsf{K}, q_n) = 0$$
$$F(\pi_1, \pi_2, \mathsf{K}, \pi_p) = 0$$
$$\pi_i = q_1^{a_1} q_2^{a_2} \mathsf{L} q_n^{a_n}$$



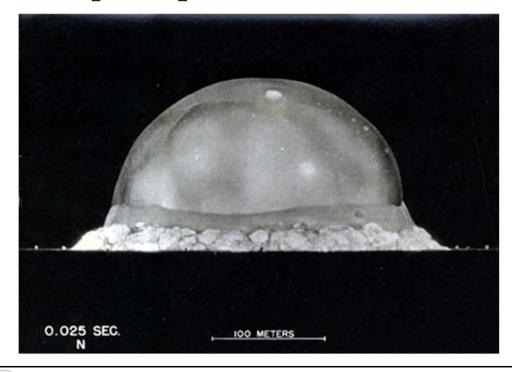
### Example: pendulum





#### A more explosive example

$$E = f(\rho, R, t) \Longrightarrow E = c \times \frac{\rho R^5}{t^2} \quad (c = 1.033)$$
$$\left[\frac{kg \cdot m^2}{s^2}\right] = \left[\frac{kg}{m^3}\right]^{\alpha} \cdot [m]^{\beta} \cdot [s]^{\gamma} \implies \alpha = 1 \quad \beta = 5 \quad \gamma = -2$$



t = 0.025 s, R = 140 m E ~  $90 \times 10^{12}$  J (90 TJ)

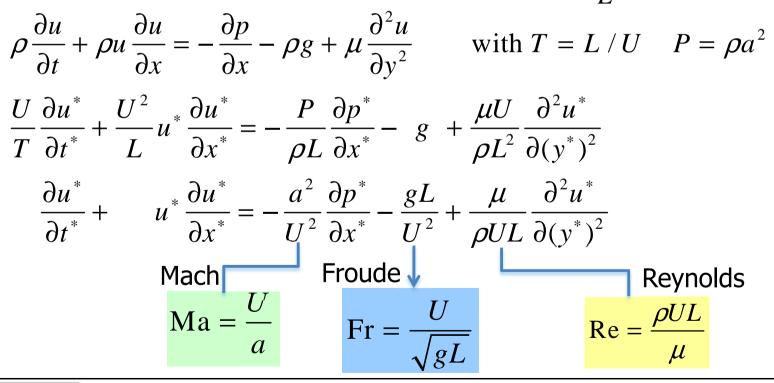
G.I. Taylor (1950)



### Scaling of the equations

reference velocity  $U \rightarrow$  dimensionless velocity  $u^* = \frac{u}{U}$ 

reference length  $L \rightarrow$  dimensionless coordinate  $x^* = \frac{x}{L}$ , K





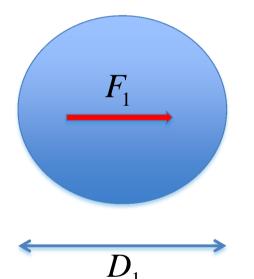
### **Dimensionless numbers**

| $\operatorname{Re} = \frac{\rho UL}{\rho}$ | inertia forces         |
|--------------------------------------------|------------------------|
| $\mu$                                      | viscous forces         |
| $\mathbf{E}\mathbf{r}$ – $U$               | inertia forces         |
| $Fr = \frac{U}{\sqrt{gL}}$                 | gravity forces         |
| $Ma = \frac{U}{U}$                         | flow speed             |
| Ma = - a                                   | speed of sound         |
| We = $\frac{\rho U^2 L}{\Gamma}$           | inertia forces         |
| $vv c - \frac{\sigma}{\sigma}$             | surface tension forces |
| $C = \frac{D}{D}$                          | drag force             |
| $C_D = \frac{1}{\frac{1}{2}\rho U^2 A}$    | dynamic force          |

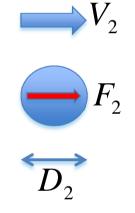


# Dynamic similarity





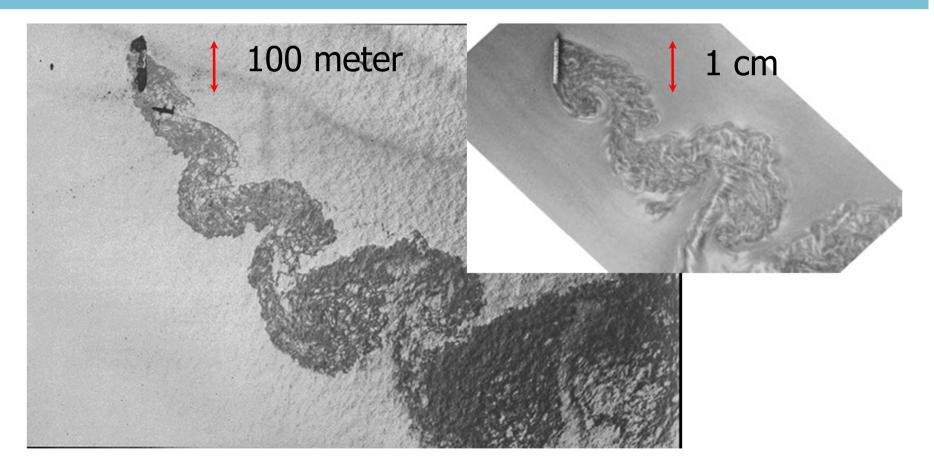
geometric similarity:  $x_1^* = x_2^*$ kinematic similarity:  $t_1^* = t_2^*$ dynamic similarity:  $\mathbf{f}_1^* = \mathbf{f}_2^*$ 



Dynamic similarity requires that all dimensionless numbers are equal In practice (with many parameters) approximations are needed



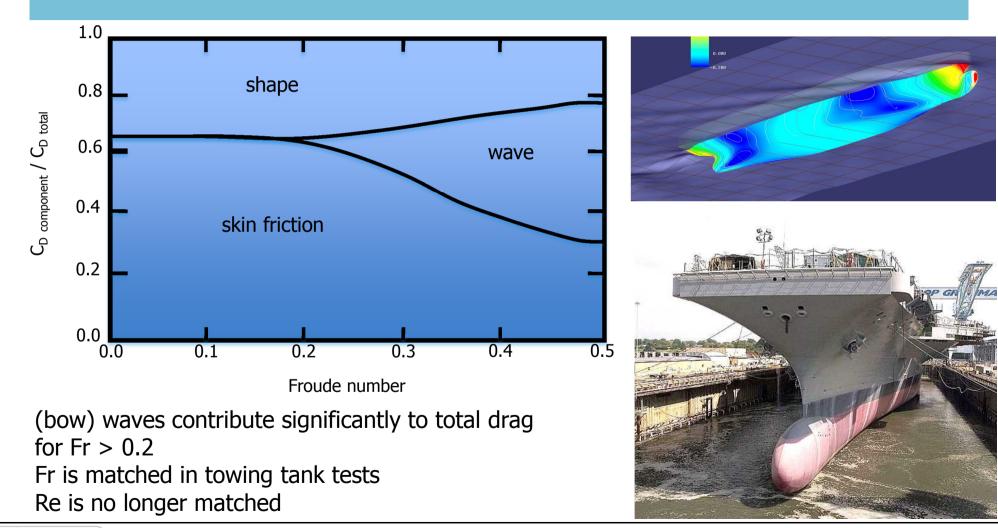
# Similarity scaling



Van Dyke, Album of Fluid Motion



### Towing tank tests





[3]

# Summary

- Chapter 5: 5.1-5.5
- Examples: 5.1-5.8
- Problems: see BlackBoard





- 1. Multimedia Fluid Mechanics DVD-ROM, G. M. Homsy, University of California, Santa Barbara
- 2. Frank M. White, Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering
- 3. USS George H.W. Bush (CVN 77), photo by Mr. John Whalen courtesy Northrop Grumman Ship Building

