- basic principles of numerical analysis, intro FEM
basic principles of numerical analysis, intro FEM
- idealization, equilibrium, solutions, interpretation of results
- types of numerical engineering problems
- continuous vs discrete systems
- direct stiffness approach
- differential & variational formulation
- introduction to Patran/Nastran
Course outline

- Basic principles of numerical analysis, intro FEM
- From PDEs to numerical modeling
 - Differential formulation of the physical problem
 - Numerical analysis suitable formulation
 - Boundary conditions (essential, natural, mixed)
 - Analysis of engineering system with trusses, beams, solids
course outline

- basic principles of numerical analysis, intro FEM
- from PDEs to numerical modeling
- variational formulation
 - minimum of potential energy
 - element formulation
 - numerical interpolation / differentiation / integration
 - element assembly
 - plane stress / plane strain / 3D solid models
course outline

- basic principles of numerical analysis, intro FEM
- from PDEs to numerical modeling
- variational formulation
- properties of the numerical model/numerical solution
 - solution of the governing linear system of equations
 - solution properties / solution quality
 - convergence properties / error measure
 - convergence test, verification, validation
course outline

- basic principles of numerical analysis, intro FEM
- from PDEs to numerical modeling
- variational formulation
- properties of the numerical model/numerical solution
- linear statics and dynamics
 - time dependent problems / equations of motion
 - modeling of masses and damping / damping effects
 - explicit and implicit solution methods
 - mode superposition / modal analysis / eigenvalue problems
 - modal analysis / explicit & implicit solution methods
problem types considered – classification

- **boundary value** problems (static / steady state)
 - stationary heat flow
 - linear elasticity (truss systems, beams, slabs, ...)
 - ...

- **initial value** problems (time dependent propagation)
 - instationary heat flow
 - vibration problems
 - incremental solution geometric nonlinearities
 - ...

- **eigenvalue** problems
 - frequency analysis of structures
 - stability
 - algebraic properties of elements
 - modal decomposition
 - ...

© MRu 2013
FEM – literature (selection)

- K.-J. Bathe
 Finite Element Procedures
 Prentice Hall, 1995

- R.D. Cook, D.S. Malkus, M.E. Plesha
 Concepts and Applications of Finite Element Analysis
 John Wiley & Sons, 1989

- T.J.R. Hughes
 The Finite Element Method – Linear Static and Dynamic FEA
 Prentice Hall, 2000

- B.A. Szabó, I. Babuška
 An Introduction to FEA: Formulation, Verification and Validation
 Prentice Hall, 2011

- O.C. Zienkiewicz and R.L. Taylor
 The Finite Element Method – The Basis (vol 1) & Solid Mechanics (vol 2)

...
discrete vs continuous

discrete \(\rightarrow\) reduction of complexity \(\rightarrow\) **continuous**

- physical problem described by a set of ***algebraic equations***
- physical response at a **finite** number of points

- physical problem described by a set of ***differential equations***
- physical response at an **infinite** number of points

finite element model

© MRu 2013
discrete vs continuous

differential form
- method of weighted residuals
 - collocation
 - least square approach
 - Galerkin approach

variational form
- variational principles
 - minimum potential energy
 - Hellinger Reissner \((\sigma, u)\)
 - Hu-Wahizu \((\varepsilon, u)\)

governing integral form

finite element method
- discrete system
- algebraic form
- solution of a system of equations

© MRu 2013