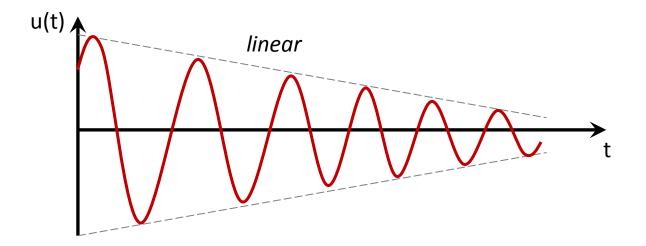
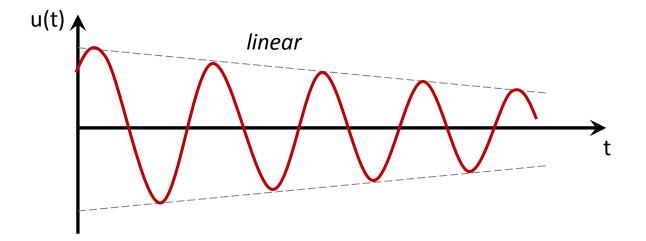
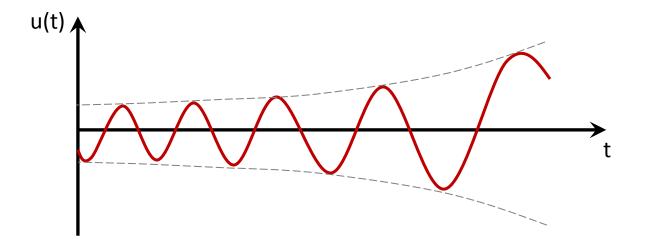

Damping models


viscous damping

- results from slow moving structures in fluids and gases, e.g.
 - friction bearings
 - hydraulic dampers
 - shock absorbers, ...
- damping force is *proportional* to velocity


Coulomb damping

- results from friction on a dry surface, depending on
 - contact pressure
 - friction coefficient
- damping behavior is constant
- typical examples are bolt & rivet connections


hysteresis damping

- results from internal friction of material (structure damping)
- damping forces are functions of displacements u and strains ε
- often measured experimentally from the hysteresis of a loaddisplacement diagram using harmonic excitation
- damping force (absolute value of) is proportional to elastic forces

negative damping

- appears at e.g. flutter of aircrafts
- energy input instead of energy dissipation
- energy input from streaming fluids
- results in excitation of the structure

properties

- in general several damping effects are present in *real structures*
- damping models are often highly complex
- simplification is necessary with regard to the solution process of the governing damped equations of motion
- equivalent viscous damping models often replace complex damping models (equivalent = same energy dissipation)
- damping matrix can be derived analogue to consistent mass matrix

$$\mathbf{C} \;=\; \int_{\Omega} \mu \, \mathbf{N} \, \mathbf{N}^T \, d\Omega$$

damping

properties

- damping matrix $\mathbf{C} = \int_{\Omega} \mu \, \mathbf{N} \, \mathbf{N}^T \, d\Omega$
- symmetric, often sparse
- without relation to K and \mathbf{M} \rightarrow non-proportional damping
 - decoupling of equations of motion difficult/not possible
- alternative approach → proportional damping
 - e.g. Rayleigh damping

$$\mathbf{C} = \boldsymbol{\alpha} \mathbf{K} + \boldsymbol{\beta} \mathbf{M}$$

- pro: eigenvectors of undamped problem diagonalize C
- con: use of only two free parameters α,β

damping

properties

- alternative approach
 - e.g. Rayleigh damping

$$\mathbf{C} = \boldsymbol{\alpha} \mathbf{K} + \boldsymbol{\beta} \mathbf{M}$$

 \rightarrow proportional damping

• often choice of α , β depending on the *damping ratio* ξ_i

$$c_i = \alpha \,\omega_i^2 + \beta = 2\,\xi_i\,\omega_i$$

• ξ_i represents a percentage of critical damping, e.g. 2-5% for metallic materials $\rightarrow 0.02 \le \xi_i \le 0.05$