Thermodynamica 1

Bendiks Jan Boersma Wiebren de Jong Thijs Vlugt Theo Woudstra

Process and Energy Department

February 1, 2011

college 1 – boek hoofdstuk 1

1

Delft University of Technology

Course Basics

- Lectures: Tuesday & Friday, 10.45-12.30, lecture hall A (B & C)
- **Exercises**: Wednesday, 15:45-17:30, lecture hall A,B and C.
- Instructors:
 - prof.dr.ir. B.J. Boersma, tel 87979, <u>b.j.boersma@tudelft.nl</u>
 - dr.ir. W. de Jong, tel 89476, w.de.jong@tudelft.nl
 - prof. dr.ir. T.J.H. Vlugt, tel 87551, t.j.h.vlugt@tudelft.nl
 - ir. T. Woudstra, tel 86999, t.woudstra@tudelft.nl
- Materials for study:
 - Book: Moran & Shapiro, *Fundamentals of Engineering Thermodynamics 5th or 6th edition.*
 - Formula sheet (can be used at examination)
- Exam: written exam: 10-15 multiple choice and 2 (or 3) open questions
- See **Blackboard** for detailed information

² **T**UDelft

February 1, 2011

Coarse basics (contd.)

Wednesday:

- Exercises from Moran and Shapiro (see blackboard for the specific exercises)
- We expect that you try to solve the problems before the Wednesday lecture.
- The solutions of the problems will NOT be available via blackboard or collegerama.

Book: Leeghwater!!

5de of 6de editie

Boek wordt ook gebruikt voor thermo II

February 1, 2011

4

WHAT IS A MACHINE?

February 1, 2011

5

TUDelft

Perpetium mobile?

February 1, 2011

Introduction (contd.)

- *Thermodynamics* literally means "heat-force"
- Thermodynamics as a science started in the early 19th century to investigate the most efficient means of converting heat into work
- Today thermodynamics has a more wider interpretation: science of (changes in) material properties in which transfer and conversion of energy by heat and work play a dominant role
- Thermodynamics is applied in: physics, chemistry, biology, material science, and engineering
- Thermodynamics in mechanical engineering: (design of) heat engines

February 1, 2011

concise history (0)

• ~50:

Hero's Aeolipile (yes, it always starts with a Greek...)

February 1, 2011

16

fire-powered self-opening doors

February 1, 2011

concise history (I)

- Development of thermodynamics coincides with industrial revolution
- Around 1650:
 Von Guericke: air pump Boyle: gas law (*pV* = const.)
- Around 1800:
 Gay-Lussac: pV = RT
- 1690:
 Papin: first steam engine (impracticable)
- 1712: Newcomen:

first working steam engine

February 1, 2011

18

Balans stoommachine Geen vliegwiel!

- Verschil in kracht op /neer
- Werkt op onderdruk!!

19

February 1, 2011

First working steam engine by Newcomen in 1712 UDelft

Newcomben steam engine

locomotion steam engine, met bakschuif

beide slagen even krachtig

February 1, 2011

modern steam turbine

More than 80% of our electricity is generated via a steamturbine

February 1, 2011

23

concise history (II)

- Watt (1764): efficient steam engine
- till 1800: 'heat' is a weightless fluid: *flogiston* heat is released by cutting matter
- Rumford (1798): blunt drills generate more heat
- Davy (1810): friction produces heat
- Carnot (1824):
- Around 1850: Mayer, Joule:

heat yields more work when it flows from high to low temperature (2nd Law of Thermodynamics)

relation between **heat** and **work** (1st Law of Thermodynamics)

February 1, 2011

24

concise history (III)

- Clausius, Kelvin systematic approach thermodynamics
- Fowler (1930) 0th Law of Thermodynamics
 Classical Thermodynamics
- Dalton (~1800)
- Planck (~1900)
- Einstein (1905)

atom \rightarrow statistical thermodynamics

quantum mechanics

25

Stork HOTLO

February 1, 2011

V8 engine

February 1, 2011

Energietechniek

Copyright 2000, Keveney.com

classical thermodynamics

- *equilibrium* \rightarrow 'time does not matter'
- empirical: based on observation and experiment
- most practical problems:

no equilibrium and *transients* heat flows, liquids and gases flow; in practice we also need heat and mass transfer and fluid mechanics

- Fundamentals laid down in four principle laws:
 - Oth Law: equilibrium and existence of temperature
 - 1st Law: conservation of energy
 - 2nd Law: limitations nature implies on processes
 - 3rd Law: reaching zero absolute temperature

February 1, 2011

concepts/definitions

- system
- continuum
- thermodynamic equilibrium
- property and state
- process

system

- **system** = the matter that is considered
- defined by its **boundary**
- **surroundings**: everything external to the system
- exchange system/surroundings through the boundary: matter and energy (as heat and work)
- First, we make a distinction between **open** and **closed** systems based upon the inflow and outflow of *matter:*
 - **closed** system: no matter passes through the boundary
 - **open** system: matter passes through the boundary

31

examples of closed systems

examples of open systems

February 1, 2011

open system \Rightarrow 'control volume'

system (cont'd)

- except matter, also *energy* can be exchanged with the surroundings in the form of *heat* and *work*:
 - general (*diabatic*) system:
 - a *diabatic* system can exchange both heat and work with its surroundings
 - adiabatic system: an adiabatic system does not exchange energy in the form of heat
- furthermore:
 - isolated system: an isolated system has no exchange with surroundings

systems: summary

systems: examples

System boundaries

 \Rightarrow you can decide on the system boundary that is appropriate for your task

continuum

In thermodynamics matter is considered to be a *continuum*. Example: density

 $\frac{\Delta M}{\Delta V}$ volume ΔV massa ΔM taking the zero volume limit: ΔM $\lim_{\Delta V \to 0} \frac{\Delta M}{\Delta V} = ?$ ΔV local 'point' density: $\rho = \lim_{\Delta V \to \Delta V^*} \frac{\Delta M}{\Delta V}$ $\Delta V_1 \quad \Delta V^*$ ΔV ΔV_2

The density thus defined is a macroscopic property

February 1, 2011

thermodynamic equilibrium

Important observation:

an isolated system eventually reaches a time independent state

This final state we call a (thermodynamic) *equilibrium state.*

So: equilibrium state = isolated system (or can be isolated without changing its state)

Examples:

- Creamer and sugar added to a cup of coffee (after stirring) will eventually become a quiescent homogeneous mixture that does not change
- After closing the cap of a soda bottle an equilibrium between the CO₂ in the air and water will be established

39

after a short time

after a much longer time

Classical thermodynamics only considers equilibrium states but not how these states are reached \rightarrow 'thermostatics'

February 1, 2011

variables of state or properties

The state of a system is specified by (a small number of) variables: *state variables* or *properties* (book).

A property is independent of the way the state is reached! The magnitude of a change in a property only depends on the initial state and final state, and not on the path.

Example: the state of an ideal gas in an equilibrium is determined by its temperature T and volume V. The work done by the gas is not a property.

More properties exist than we need to uniquely specify a state. We then select the most appropriate ones (e.g., T and V); the other are given by the *equation of state*, e.g. p = f(V, T).

(Classical) thermodynamics considers equilibrium states only.

February 1, 2011

intensive, extensive and specific properties

intensive: an intensive property does not change when the system is changed in size (e.g., temperature and pressure)

extensive: an extensive property changes proportionally to the size of the system (e.g., mass, volume and energy)

specific: a specific state is an extensive property per unit mass (or per kmol):

Example: specific volume: $v = \frac{V}{m} = \frac{1}{\rho}$ (book: the specific volume in kmol is denoted by: \overline{v})

specific properties are intensive properties.

42

February 1, 2011

process

A process is defined as the change of the state of a system.

We only consider changes from one equilibrium state to another

The state of a system has changed when the properties (in an equilibrium state) have changed. During the change the system is not in equilibrium.

A (thermodynamic) **cycle** is a process where the initial and final states are identical.

adiabatic system \rightarrow adiabatic process isolated system \rightarrow isolated process

43

process: examples

February 1, 2011

44

the quasi-static process

quasi-static process:

divide the process into infinitesimal state changes and let the system relax to an equilibrium state at every change

Example: slowly move a piston in a cylinder

Because the process consists of a series of equilibrium states the equilibrium equations of state remain valid.

The process can also be done in the reverse direction, so a quasi-static process is **reversible**.

We assume that all processes considered in this lecture series are quasi-static (unless stated otherwise)

45

Instructions

- Chapter 1 to 1.6 has been treated read this thoroughly in book !!!
- Self-study: 1.4.1 (SI units) and 1.5.2 (pressure)
- Solve the exercises 1.1-1.4, & 1.6-1.8, & 1.10-1.13, 1.21 & 1.22

February 1, 2011

46