Thermodynamica 1

Bendiks Jan Boersma
Wiebren de J ong
Thijs J.H. Vlugt
Theo Woudstra

Process and Energy Department
February 19, 2011

summary lecture 4

- properties of matter
- p - V-Tsurface
- isobar, isotherm, isochor
- phase transition
- coexisting phases
- working with tables, interpolation

equation of state of I deal Gases

The intensive properties $\{p, v, T\}$ of matter (gas, liquid, solid) are not independent of one another. The relation between them is called equation of state

The simplest equation of state is the ideal gas equation of state

$$
\begin{array}{ll}
\text { It was found in stages, by realizing that } & p V=C(n, T) \\
\text { if the Kelvin-temp. scale is used, it was seen that } & p V=C(n) T
\end{array}
$$

the final equation of state is

$$
\begin{aligned}
& p V=n \bar{R} T \\
& \\
& \text { universal gas constant } \\
& \bar{R}=8.314471 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}
\end{aligned}
$$

$V \quad$ volume [m^{3}]
T temperature [K]
$n \quad$ amount of substance [mol]

1 mol contains $N_{A}=6.0221367 \times 10^{23}$ molecules

equation of state of I deal Gases

$p V=n \bar{R} T$
 $p \bar{v}=\bar{R} T$
 $\bar{v}=\frac{V}{n}$

$$
\bar{R}=8.314471 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}
$$

p	pressure $[\mathrm{Pa}]$
V	volume $\left[\mathrm{m}^{3}\right]$
T	temperature $[\mathrm{K}]$
n	amount of substance $[\mathrm{mol}]$

1 mol contains $N_{A}=6.0221367 \times 10^{23}$ molecules

the "iso"-diagrams for ideal gases

The relation between 2 of the 3 properties $\{p, v, T\}$
can be visualized in state diagrams

relevance of the ideal gas model

- The ideal gas state is a limit for gases of low density
- Every real component approaches ideal gas behavior for pressures $p \rightarrow 0$ bar and $\rho \rightarrow 0 \mathrm{~kg} / \mathrm{m}^{3}$
- Molecular interpretation: a gas shows ideal gas behavior, when the molecular interactions do not play a role (\Rightarrow for low densities and/or high temperature)

dealing with "real" gases

compressibility factor: $\quad Z=\frac{p \overline{\mathrm{v}}}{\bar{R} T}$
ideal gas limit:

$$
\lim _{p \rightarrow 0} Z=1
$$

reduced pressure and reduced temperature:

$$
p_{\mathrm{R}}=\frac{p}{p_{c}}, \quad T_{\mathrm{R}}=\frac{T}{T_{c}}
$$

Figure 3.11 Generalized compressibility chart for various gases

examples of equations of state

-I deal gas equation of state

$$
Z=\frac{p \overline{\mathrm{v}}}{\bar{R} T}=1
$$

-Virial equation of state (for non-ideal gasses)

$$
Z=\frac{p \overline{\mathrm{v}}}{\bar{R} T}=1+B(T) p+C(T) p^{2}+D(T) p^{3}+\ldots \ldots \ldots
$$

-Van der Waals equation of state (for non-ideal gasses)

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n \bar{R} T
$$

the internal energy of an ideal gas

experiment of J oule and Thomson measurement: $T_{1}=T_{2}=T$!

first law: $\quad d U=\delta Q-\delta W$

$$
\begin{aligned}
\Delta_{12} U= & \Delta / 1_{2} Q-\Delta / 2 W \\
& \quad \leq 0 \quad=0 \\
\Rightarrow & \Delta_{12} U=0 \\
\Rightarrow & U_{2}-U_{1}=U\left(T, V_{2}\right)-U\left(T, V_{1}\right)=0 \\
\Rightarrow & u\left(T, v_{2}\right)-u\left(T, v_{1}\right)=0 \quad \text { with } \quad v_{2} \neq v_{1}
\end{aligned}
$$

\Rightarrow we conclude that u is only a function of temperature $u(T)$ for an ideal gas

isothermal expansion of an ideal gas

note: an isothermal process requires providing energy in form of heat during expansion, otherwise the temperature would decrease

and $T=$ const.

$$
\Rightarrow \Delta_{12} Q=\Delta_{12} W=\int_{V_{1}}^{V_{2}} p d V=n \bar{R} T \int_{V_{1}}^{V_{2}} \frac{n}{V} T V=n \bar{R} T \ln \frac{V_{2}}{V_{1}} \text { ideal gas law }
$$

polytropic expansion

$p V^{n}=\operatorname{constant}($ with $\mathrm{n} \neq 1)$

$$
\Delta_{12} W=\int_{V_{1}}^{V_{2}} p d V=\frac{p_{2} V_{2}-p_{1} V_{1}}{1-n}
$$

Math: Differential relations of multivariable functions

- consider a differentiable function $z(x, y)$
- Think of z as the height coordinate in the Swiss Alps, and x and y are the northerly direction and the westerly direction, respectively
- The total differential is

$$
d z=\left(\frac{\partial z}{\partial x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} d y
$$

- $(\partial z / \partial x)_{y}$ is the slope with which the height changes with a change $d x$ in x-direction. Subscript y is for: "in direction of constant y "
- Note, that $(\partial z / \partial x)_{y}$ is a function of y, as seen in
 the illustration

Specific heat at constant volume

-For an ideal gas: $\quad u(T, v)=u(T)$

- How does $u(T)$ change with T ?

-Recall the first law: $d u=\delta q-\delta w=\delta q-p d v$
-At constant volume: $d u=\delta q$
-Definition of heat capacity at constant volume (here: in units of $\left[\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]$)

$$
c_{v} \equiv\left(\frac{\partial u}{\partial T}\right)_{v}
$$

- c_{v} : the amount of heat that needs to be added to increase the temperature of 1 mol material by 1 Kelvin, while keeping the volume constant. Definition is valid also for nonideal gasses.

Specific heat at constant volume

$$
c_{v} \equiv\left(\frac{\partial u}{\partial T}\right)_{v} \quad \stackrel{d q}{ } \begin{aligned}
& V=\text { constant } \\
& T \rightarrow T+d T
\end{aligned}
$$

-For an ideal gas,

$$
c_{v}=c_{v}(T)
$$

-Usually:

$$
c_{V}=a+b T+c T^{2}+\ldots \ldots
$$

-Energy change at constant volume upon heating:

$$
\Delta u=u_{2}-u_{1}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial u}{\partial T}\right)_{v} d T=\int_{T_{1}}^{T_{2}} c_{v} d T
$$

Energy change upon heating at constant V

suppose: $c_{V}=a+b T$

$$
\begin{aligned}
& \Delta u=u_{2}-u_{1}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial u}{\partial T}\right)_{v} d T=\int_{T_{1}}^{T_{2}} c_{v} d T=\int_{T_{1}}^{T_{2}}(a+b T) d T= \\
& {\left[a T+\frac{1}{2} b T^{2}\right]_{T_{1}}^{T_{2}}=a\left(T_{2}-T_{1}\right)+\frac{b}{2}\left(T_{2}^{2}-T_{1}^{2}\right)}
\end{aligned}
$$

The Enthalpy

$$
H \equiv U+p V
$$

$$
h \equiv u+p v
$$

$$
d h=d u+d(p v)=d u+p d v+v d p
$$

adding heat while keeping the pressure constant

-Recall the first law: $\quad d u=\delta q-\delta w=\delta q-p d v$
-Enthalpy: $\quad H \equiv U+p V \quad h \equiv u+p v$

-First law in terms of enthalpy:

$$
d h=\delta q+v d p
$$

-Adding heat at constant pressure $d h=\delta q$
-Definition of heat capacity at constant pressure: (here: in units of $\left[\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]$)

$$
c_{p} \equiv\left(\frac{\partial h}{\partial T}\right)_{p}
$$

specific heat at constant pressure

$$
c_{p} \equiv\left(\frac{\partial h}{\partial T}\right)_{p}
$$

-For an ideal gas,

$$
c_{p}=c_{p}(T)
$$

-Usually:

$$
c_{p}=a+b T+c T^{2}+\ldots \ldots
$$

-Enthalpy change at constant pressure upon heating:

$$
\Delta h=h_{2}-h_{1}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial h}{\partial T}\right)_{p} d T=\int_{T_{1}}^{T_{2}} c_{p} d T
$$

heating at constant volume or pressure

-At constant volume: $d u=\delta q$
-Definition of heat capacity at constant volume (here: in units of $\left[\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]$)

$$
c_{v} \equiv\left(\frac{\partial u}{\partial T}\right)_{v}
$$

- c_{v} : the amount of heat that needs to be added to increase the temperature of 1 mol material by 1 Kelvin, while keeping the volume constant
-At constant pressure: $d h=\delta q$
-Definition of heat capacity at constant pressure (here: in units of $\left[\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]$)

$$
c_{p} \equiv\left(\frac{\partial h}{\partial T}\right)_{p}
$$

- c_{p} : the amount of heat that needs to be added to increase the temperature of 1 mol material by 1 Kelvin, while keeping the pressure constant

I nstructions

- Chapters 1,2,3 have been treated
- we discussed and illustrated the ideal gas law - read thoroughly in book !!!
- memorize the definition of enthalpy
- memorize the first law of closed systems in terms of the enthalpy
- understand that $u(T)$ and that $h(T)$ for ideal gas
- understand the heat capacity c_{v} and c_{p} what does it tell you?
- make exercises concerning ideal gasses and non-ideal gasses; (compressibility factor Z, use $\pm 5 \%$ deviation as a good approximation to the ideal gas model).

relation between c_{p} and c_{v} for an ideal gas

$$
\begin{aligned}
& h=u+p v=u+R T \\
& c_{p}=\left(\frac{\partial h}{\partial T}\right)_{P}=\left(\frac{\partial(u+\bar{R} T)}{\partial T}\right)_{P}=c_{v}+\bar{R}
\end{aligned}
$$

adiabatic expansion of an ideal gas ($\mathrm{c}_{\mathrm{v}}=$ constant)

$$
\begin{aligned}
& d u=\delta q-p d v=-p d v \\
& c_{v} d T=-\frac{\bar{R} T d v}{v} \\
& c_{v} \frac{d T}{T}=-\bar{R} \frac{d v}{v} \\
& c_{v} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=-\bar{R} \int_{v_{1}}^{v_{2}} \frac{d v}{v} \\
& c_{v} \ln \frac{T_{2}}{T_{1}}=-\bar{R} \ln \frac{v_{2}}{v_{1}}
\end{aligned}
$$

after some math...

$$
p v^{\kappa}=\operatorname{constant}\left(\text { with } \kappa=\frac{c_{p}}{c_{v}}\right)
$$

Adiabatic Expansion

$$
p v^{\kappa}=\mathrm{constant} \quad \kappa=\frac{c_{p}}{c_{v}}
$$

Clement \& Desormes' Experiment (1)

Op druk gebrachte fles is toestand 1; na isochore expansie is toestand 2. Na de adiabatisch veronderstelde snelle expansie juist voor het sluiten van de kraan is de druk p_{0} (omgevingsdruk)
$\mathrm{p}_{1}=\mathrm{p}_{\mathrm{o}}+\rho \mathrm{gh}_{1}$
$(1) \Leftrightarrow p_{0}=p_{1}-\rho g h_{1}$
$p_{2}=p_{0}+\rho g h_{2}$
(2) $\Rightarrow p_{2}=\left(p_{1}-\rho g h_{1}\right)+\rho g h_{2}=p_{1}-\left(h_{1}-h_{2}\right) \rho g$

Na op druk brengen van de fles volgt adiabatische expansie:

$$
\begin{equation*}
p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma} \tag{3}
\end{equation*}
$$

Gas na op druk brengen en na de isochore expansie bereikt uiteindelijk dezelfde $\mathrm{T} \Rightarrow$

$$
\begin{align*}
& \mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} \quad \text { (4) } \tag{5}\\
& \text { Met (3) en } \mathrm{V}_{2}=\mathrm{V}_{0} \text { volgt dan: }
\end{align*} \quad \Leftrightarrow \quad\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma}
$$

$$
\begin{equation*}
\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}\right) \tag{6}
\end{equation*}
$$

Clement \& Desormes' Experiment (2)

Uit (5) en (6) volgt: $\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}\right)$

$$
\begin{equation*}
\text { (7) } \Leftrightarrow \quad \gamma=\frac{\ln \left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}\right)}{\ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)} \tag{7a}
\end{equation*}
$$

Verdere vereenvoudiging mogelijk als p niet teveel van p_{0} afwijkt.
(7) en (la) $\Rightarrow\left(\frac{\left(\mathrm{p}_{1}-\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \rho \mathrm{g}\right)}{\mathrm{p}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{p}_{1}-\rho g \mathrm{~h}_{1}}{\mathrm{p}_{1}}\right)$

$$
\begin{equation*}
\left(1-\frac{\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \rho \mathrm{g}}{\mathrm{p}_{1}}\right)^{\gamma}=1-\left(\frac{\rho g \mathrm{~h}_{1}}{\mathrm{p}_{1}}\right) \tag{9}
\end{equation*}
$$

Als $\left(h_{1}-h_{2}\right) \rho g / p_{1} \ll 1$ dan mag (9), aangezien geldt voor een functie $(1+x)^{\alpha} \approx 1+\alpha x$ met $x \ll 1$ (volgt uit $f(x)=f(0+x) \approx f(0)+x f^{\prime}(0)$), benaderd worden met

$$
\begin{equation*}
1-\gamma \frac{\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \rho \mathrm{g}}{\mathrm{p}_{1}}=1-\left(\frac{\rho \mathrm{gh}_{1}}{\mathrm{p}_{1}}\right) \Leftrightarrow \gamma=\left(\frac{\mathrm{h}_{1}}{\mathrm{~h}_{1}-\mathrm{h}_{2}}\right) \tag{10}
\end{equation*}
$$

