wb1224 - Thermodynamics 2 Lecture 10 - Energy Conversion Systems

Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 13-12-2010

Content Lecture 10 - overview

- Steam power plant (Rankine cycle)
 - Superheating and reheating: thermodynamics
 - Cycle with regenerator, supercritical cycle
- Organic Rankine Cycle
- Refrigeration: compression cycle (inverse Rankine)
- Brayton cycle (Gas Turbines)
- Ideal vs real Brayton air cycle
- Regeneration
- Closed Brayton Cycle

Superheating and reheating

- The steam turbine: high expansion ratio (β_p =1884) and problem of condensation
- Our example: quality $q_4=0.81$. Max for current turbines $q_4=0.9^{13}$
- From Carnot: increase of P is beneficial: thermal energy introduced at higher T
- Reheating

Supercritical cycle

• Efficiency:
$$\eta_{
m cycle} \propto rac{T_{
m max}}{T_{
m min}}$$

- Limit: materials
- Best steam power plants: (ultra) supercritical
- 300 bar and 630 °C, η_{cycle} = 48 %

Regeneration (1)

Need for dearation

 Large inefficiency → liquid preheating with steam spilled from the turbine

Example: evaluation of regeneration

- Data as in the superheated cycle
- Steam extraction at 7 bar. It provides heating from 2 to 3
- Need to calculate state 3, 4, and 6

1

State 3 (dearator)

Organic Rankine Cycle turbogenerator

- Small capacity: from few kW up to 1-2 MW_e (optimal turbine)
- Renewable energy!
- Good for low-temperature heat sources (geothermal)
- Dry expansion
- Analysis: the same as steam cycle, but different fluid

Refrigeration

Vapor compression cycle

- Objective: cooling, thermal energy transfer (food, home,..)
- Inverse Rankine cycle (same cycle shape in the T-s and P-h diagrams)
- Thermal power transfer is obtained by means of mechanical power (compression)
- Working fluid: refrigerant to match environment conditions

Vapor comp. cycle analysis: Input data

INPUT DATA

- Working fluid: R245fa
- Evaporation temperature: T = 268.15 K
- Condensation temperature T = 305.15 K
- Compressor: $\eta_{\rm is, \ compr} = 0.75$

-200

0.1 +

 $\dot{\boldsymbol{\varrho}}$ from cooled space

-100

h [kJ/kg]

0

💌 Microsoft Excel - R245fa Tables.xls												
:1	Eile Edit View Insert Format Tools Data Window Help Adobe PDF Type a question for held									ielp 🔹	- 8 ×	
🗄 🗅 😂 🛃 💪 🖂 🖾 🖏 🖏 🐇 🐁 🏝 🕰 • 🏈 🗠 • 🔍 - 🧶 Σ • ½↓ ¾↓ 🛍 🚮 100% - @ 💂 ½ 🗹 • .2												
i Arial - 10 - B Z U ≡ ≡ ≡ 🧐 % , 🐝 🕺 🗉 - 🆄 - 🗛 - 🖉 : 🗫 🖉 : 🔂 🐙 💂 : 🚈												
i Tecplot 🔤 i Draw 🗸 📐 AutoShapes 🕶 🔨 🔪 🖸 🔿 🦳 🖓 🕼 🛃 🖄 🗸 🎿 🗸 🗮 🚃 🛃 🗐 📮												
M1 - fx												
	A	В	С	D	E	F	G	Н	1	J	K	^
Properties of Saturated R245fa (Vapor-Liquid) as a Function of Temperature												
2												
3	3 Thermodynamic model: StanMix, R245fa											
4	Temp. Pressure Specific volume			Internal Energy		Enth	Enthalov		Entropy		Pr	
6	Tomp:	Troodaro	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor		· · ·
7	°C	bar	m3/kg	m3/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg.K	kJ/kg.K		=
8	Т	Р	VL	Vv	UL	uv	hL	hv	SL	Sv		
9	-50	0.031525	0.0006501	4.381	-281.80	-73.0	-281.80	-59.2	-1.0107	-0.0133		
10	-40	0.0626	0.0006580	2.301	-270.75	-66.5	-270.75	-52.1	-0.9623	-0.0243		
11	-30	0.116347	0.0006666	1.288	-259.48	-59.7	-259.47	-44.7	-0.9149	-0.0317		
12	-20	0.204148	0.0006759	0.761	-247.97	-52.8	-247.96	-37.2	-0.8686	-0.0362		
13	-10	0.340655	0.0006862	0.472	-236.23	-45.7	-236.20	-29.6	-0.8231	-0.0381		
14	-5	0.432692	0.0006917	0.377	-230.26	-42.1	-230.23	-25.8	-0.8006	-0.0382		
15	0	0.543965	0.00069/5	0.305	-224.23	-38.5	-224.19	-22.0	-0.7783	-0.03/9		
16	2	0.594483	0.0006999	0.280	-221./9	-3/.1	-221./5	-20.4	-0.7694	-0.03//		
1/	4	0.648/15	0.000/024	0.258	-219.35	-35.6	-219.31	-18.9	-0./606	-0.03/3		
18	6	0.706857	0.000/049	0.238	-216.90	-34.2	-216.85	-1/.3	-0./518	-0.03/0		
19	8	0.769109	0.000/0/4	0.220	-214.43	-32.7	-214.38	-15.8	-0./430	-0.0365		
20	10	0.8356//	0.000/100	0.204	-211.96	-31.2	-211.90	-14.2	-0./342	-0.0360		
21	12	0.906//2	0.000/12/	0.189	-209.47	-29.8	-209.41	-12.6	-0.7254	-0.0354		
22	14	0.982612	0.000/154	0.1/5	-206.98	-28.3	-206.91	-11.1	-0./16/	-0.0348		
23	10	1.00341/	0.000/181	0.162	-204.47	-20.8	-204.39	-9.5	-0.7080	-0.0341		
24	18	1,149416	0.000/210	0.151	-201.95	-25.3	-201.86	-8.0	-0.6993	-0.0334		
25	20	1,240841	0.0007239	0.140	-199.41	-23.8	-199.32	-0.4	-0.6906	-0.0326		
20	22	1.33/929	0.000/268	0.131	-190.8/	-22.4	-190.//	-4,9	-0.0820	-0.0318		
21	24	1.440924	0.0007299	0.122	-194.31	-20.9	-194.21	-3.3	-0.0/34	-0.0309		
20	20	1.5500/3	0.0007330	0.114	-191./4	-19.4	-191.03	-1.8	-0.0047	-0.0300		×
14 4	Vap	or liquid e	quilli <									>
Read	ý l									NUM		

Refrigeration cycle: Anaysis (1)

Refrigeration cycle: Anaysis (2)

Calculation of the COP

log *P-h* chart

Brayton cycle

- Advantage of a gas cycle (simple, light)
- Why gas turbine came after steam engines
- Working fluid: air (ideal gas)
- Operating principle
- Processes

Brayton cycle calculation: Input data

INPUT DATA: operating parameters

- State 1, 293.15K (20 °C), 1.013 bar (atmospheric pressure)
- State 2, 0.4 MPa (4 bar)
- State 3, 798.15 K (525 °C), 0.4 MPa (4 bar)
- State 4, 1.013 bar

INPUT DATA: components efficiencies

Rankine Cycle

example

- Compressor: $\eta_{\rm is, \ comp} = 0.65$ K
- Turbine: $\eta_{\rm is, turb} = 0.85$ **~**

ŤUDelft

Wb1224 – Energy Conversion Systems 18

Assumptions

- Kinetic and potential energies negligible at states 1, 2, 3, and 4
- Compressor and turbine adiabatic
- No pressure drop in the heater
- The system is at steady state

Delft

- Equilibrium states at 1, 2, 3, and 4
- Air can be modeled as a polytropic ideal gas ($\gamma = 1.4 C_p = \text{const} = 1.04 \text{ kJ/kg} \cdot \text{K}$) or as an ideal gas with $C_p = C_p(T)$ (FluidProp/GasMix)

Compressor work (state 1&2)

Air Heating (state 3)

Turbine work (state 4)

TUDelft

Net power output and efficiency

Comparison with Superheated Rankine cycle for similar compression and expansion efficiencies, but higher TIT.

$$\eta_{\rm I,Rankine} = 0.34$$

 $\eta_{\mathrm{II,Rankine}} = 0.62$

{|||

Efficiency of the ideal Brayton cycle

Pv = RT, $c_P = \text{const.}$, isentropic compression/expansion

TUDelft

Ideal gas cycle

TUDelft

Wb1224 – Energy Conversion Systems

Comparison real vs ideal cycle

- The most relevant losses are in the compressor and turbine: limitation of ideal-gas analysis (β too high is a problem)
- Limit on TIT (blade cooling)
- Fuel issue

Gas Turbine

Advantages:

- High temperature & low pressure -> high power/weight
- No blade erosion with high-quality fuel
- Fast load-change

Applications:

- Aircraft propulsion (ships, trains)
- Combined Cycle, Peak-shaving
- Cars (for hybrid engines in the future?)

Gas turbine cycle: parameters

Regeneration

- Reduction of thermal losses
- Note: T_4 often in excess of 450 °C
- For given TIT, maximum efficiency at modest β (increase $T_4 T_2$)
- Recuperator: technological problem

QH

s [kJ/kg · K]

Closed Brayton cycle gas turbine

Solar system

Wb1224 – Energy Conversion Systems 30

Final remarks

- Importance of assumptions
- Always mass and energy balances
- Thermodynamic cycles: comparison with Carnot cycle
- Courses on gas turbines of the Master in Sustainable Energy Technology:
 - ➤WB4420 Gas Turbines and
 - WB4421 Gas Turbines Simulation/Application

