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Ideal Otto cycle (1)
• Open cycle, air as ideal gas 

(no combustion)

• Model for spark-ignition recip engines

• Valves: top dead center (TDC) and 
bottom dead center (BDC)

• Ideal: instantaneous ignition at TDC

• Ideal: compression and expansion as 
isentropic

• Work done on and by the piston only 
during expansion and compression

• Isochoric combustion and discharge 
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Ideal Otto cycle (2)

DATA: 

• Pin = 1.013 bar

• Tin = 293.15 K

• Tmax = 2000 K

• ρ

 

= 8.5

• v = 1600 cm3

 v vc c T
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In order to calculate the performance and efficiency of this cycle we have to calculate the specific internal energy of states 2, 3, 4 and 5.

State 2:
P_2 = P_in = 1.013 bar
T_2 = T_in = 293.15 K

Entropy, internal energy and specific volume can be calculated using FluidProp or air tables:
s_2 = s( P_in, T_in) = 6.84 kJ/kgK
u_2 = u( P_in, T_in) = -89.16 kJ/kg
v_2 = v( P_in, T_in) = 0.831 m^3/kg

v_2 can also be calculated using the ideal gas law: v_2 = R * T_2 / P_2, with R = 8.314 J/molK and  M_air = 28.97 kg/kmol:
v_2 = 8.314/(28.97*10^-3)  * 293.15 / (1.013*10^5) = 0.831 m^3/kg

State 3:
Isentropic compression, so: s_3 = s_2 = 6.84 kJ/kgK
From compression ratio: v_3 = v_2 / ρ = 0.831 / 8.5 = 0.098 m^3/kg

Pressure, temperature and internal energy can be calculated using FluidProp:
P_3 = P( v_3, s_3) = 19.79 bar
T_3 = T( v_3, s_3) = 673.9 K
u_3 = u( v_3, s_3) = 193.4 kJ/kg

Or, from the equations for isentropic process (considering a constant γ = 1.4): P_3 / P_2 = (v_2 / v_3)^ γ  = ρ^ γ
P_3 = P_2 * ρ^ γ = 1.013 * 8.5^1.4 = 20.27 bar
And from ideal gas law (P_2 * v_2 / T_2) = (P_3 * v_3 / T_3) :
T_3 = T_2 * P_3 / P_2 * v_3 / v_2 = T_2 * P_3 / P_2 / ρ = 293.15  * 20.27 / 1.013  / 8.5= 690.1 K
Or directly: T_3 = P_3 * v_3 / R:
T_3 = (20.27*10^5) * 0.098 / (8.314/(28.97*10^-3) = 692.1 K
Next u_3 at P_3 and T_3 can be found from the air tables:
u_3 = 206.1 kJ/kg
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State 4:
Isochoric heating, so: v_4 = v_3 = 0.098 m^3/kg
T_4 = T_max = 2000 K

From FluidProp:
P_4 = P( T_4, v_4) = 58.74 bar
s_4 = s( T_4, v_4) = 7.80 kJ/kgK
u_4 = u( T_4, v_4) = 1378.0 kJ/kg

Or, from ideal gas law (P_3 * v_3 / T_3) = (P_4 * v_4 / T_4) :
P_4 = P_3 * T_4 / T_3 = 20.27 * 2000 / 690.1 = 58.75 bar
And u_4 and s_4 from the air tables:
u_4 = 1378.0 kJ/kg
s_4 = 7.80 kJ/kgK

State 5:
Isentropic expansion, so: s_5 = s_4 = 7.80 kJ/kgK
And because of isochoric cooling: v_5 = v_2 = 0.831 m^3/kg

Pressure, temperature and internal energy can be calculated using FluidProp:
P_5 = P( v_5, s_5) = 3.53 bar
T_5 = T( v_5, s_5) = 1020.5 K
u_5 = u( v_5, s_5) = 478.0 kJ/kg

Or, like in state 3, from the equations for isentropic process: P_4 / P_5 = (v_5 / v_4)^ γ  = ρ^ γ
P_5 = P_4 / ρ^ γ = 58.75 / 8.5^1.4 = 2.94 bar
And from ideal gas law (P_4 * v_4 / T_4) = (P_5 * v_5 / T_5)  or simpler from (P_2 * v_2 / T_2) = (P_5 * v_5 / T_5) (with v_5 = v_2):
T_5 = T_2 * P_5 / P_2 = 293.15 * 2.94 / 1.013 = 849.7 K
Or directly: T_5 = P_5 * v_5 / R 
T_5 = (2.94*10^5) * 0.831 / (8.314/(28.97*10^-3) = 851.3 K
Again, u_5 at P_5 and T_5 can be found from the air tables:
u_5 = 334.4 kJ/kg

Net work and efficiency

The net work per kg:
w_cycle = w_expan – w_compr = (u_4 – u_5) – (u_3 – u_2) = (1378.0 – 478.0) – (193.4 - -89.16) = 617.4 kJ/kg

And the heat transfer to the air:
q_heat = u_4 – u_3 = 1378.0 – 193.4 = 1184.6 kJ/kg 

Net efficiency:
eta = w_cycle / q_heat = 617.4 / 1184.6 = 0.521

The mass of air:
m = P_2 * v_2 / (R * T_2) = (1.013*10^5)*(1600*10^-6)/((8.314/28.97*10^3) *293.15) = 1.9 * 10^-3 kg

Net work and efficiency (constant γ)

The net work per kg:
w_cycle = w_expan – w_compr = (u_4 – u_5) – (u_3 – u_2) = (1378.0 – 334.4) – (206.1 - -89.16) = 748.3 kJ/kg

Heat transfer to the air:
q_heat = u_4 – u_3 = 1378.0 – 206.1 = 1171.9 kJ/kg 

Net efficiency:
eta = w_cycle / q_heat = 748.3 / 1171.9 = 0.639
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Ideal Otto cycle (3)

• Assumption: no combustion 
(no change of working fluid)

• Working fluid: polytropic ideal gas

• Similarly with ideal Brayton cycle:
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Efficiency of the ideal Otto cycle

• Difference with Brayton: fluid dynamic 

losses

• No maximum value for  as Brayton (real 

cycle), but  increases with  Ideal 

cycle efficiency is a good parameter for 

real-cycle evaluation

• Influence of : better if high air/to fuel 

ratio (more air)
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Real Otto cycle

• Combustion takes time: anticipation wtr 
opening of intake valve/ closing of 
exhaust valve

• Piston work to push the gases out 
-> gas work on cylinder during intake

• Compression and expansion non adiabatic 
(non isentropic)

• High  but problem of detonation
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Ideal Diesel cycle

• To avoid detonation 

 fuel injection after 
compression/spontaneous 
ignition

• Isobaric expansion

• Isentropic 
expansion/compression

Presenter
Presentation Notes
Given: 
P_in = 1.013 bar
T_in = 293.15 K
T_max = 2000 K
ρ = 20
ρ_c = 2

In order to calculate the performance and efficiency of this cycle we have to calculate the specific internal energy of states 2 and 5 and the specific enthalpy of states 3 and 4.

State 2, exactly the same as for the ideal Otto cycle:
P_2 = P_in = 1.013 bar
T_2 = T_in = 293.15 K

Entropy, internal energy and specific volume can be calculated using FluidProp or air tables:
s_2 = s( P_in, T_in) = 6.84 kJ/kgK
u_2 = u( P_in, T_in) = -89.16 kJ/kg
v_2 = v( P_in, T_in) = 0.831 m^3/kg

v_2 can also be calculated using the ideal gas law: v_2 = R * T_2 / P_2, with R = 8.314 J/molK and  M_air = 28.97 kg/kmol:
v_2 = 8.314/(28.97*10^-3)  * 293.15 / (1.013*10^5) = 0.831 m^3/kg

State 3:
Exactly the same as for the ideal Otto cycle: isentropic compression, so: s_3 = s_2 = 6.84 kJ/kgK  
From compression ratio: v_3 = v_2 / ρ = 0.831 / 20 = 0.042 m^3/kg

Pressure, temperature and enthalpy can be calculated using FluidProp:
P_3 = P( v_3, s_3) = 63.12 bar
T_3 = T( v_3, s_3) = 931.3 K
h_3 = h( v_3, s_3) = 649.3 kJ/kg

Or, from the equations for isentropic processes (considering a constant γ = 1.4): P_3 / P_2 = (v_2 / v_3)^ γ  = ρ^ γ
P_3 = P_2 * ρ^ γ = 1.013 * 20^1.4 = 67.15 bar
And from ideal gas law (P_2 * v_2 / T_2) = (P_3 * v_3 / T_3) :
T_3 = T_2 * P_3 / P_2 * v_3 / v_2 = T_2 * P_3 / P_2 / ρ = 293.15  * 67.15 / 1.013  / 20 = 971.6 K
Or directly: T_3 = P_3 * v_3 / R:
T_3 = (67.15*10^5) * 0.042 / (8.314/(28.97*10^-3) = 971.7 K
Next h_3 at P_3 and T_3 can be found from the air tables:
h_3 = 715.2 kJ/kg

State 4:
Isobaric heating, so: P_4 = P_3 = 63.12 bar
v_4 = ρ_c * v_3 = 2 * 0.042 = 0.084 m^3/kg

From FluidProp:
T_4 = T( P_4, v_4) = 1826.6 K
h_4 = h( P_4, v_4) = 1736.1 kJ/kg
s_4 = s( P_4, v_4) = 7.66 kJ/kgK

Or, from ideal gas law (P_3 * v_3 / T_3) = (P_4 * v_4 / T_4) and P_4 = P_3:
T_4 = T_3 * v_4 / v_3 = T_3 * ρ_c = 971.7 * 2 = 1943.4 K (using the T_3 not calculated by FluidProp)
And u_4 and s_4 from the air tables:
h_4 = 1881.1 kJ/kg
s_4 = 7.72 kJ/kgK

State 5:
Isentropic expansion, so: s_5 = s_4 = 7.66 kJ/kgK
And because of isochoric cooling: v_5 = v_2 = 0.831 m^3/kg

Pressure, temperature and internal energy can be calculated using FluidProp:
P_5 = P( v_5, s_5) = 3.01 bar
T_5 = T( v_5, s_5) = 870.9 K
u_5 = u( v_5, s_5) = 351.9 kJ/kg

Or, like in state 3, from the equations for isentropic processes: P_4 / P_5 = (v_5 / v_4)^ γ
P_5 = P_4 * (v_4 / v_5)^ γ = 67.15 * (0.083/0.831)^1.4 = 2.67 bar
And from ideal gas law (P_4 * v_4 / T_4) = (P_5 * v_5 / T_5)  or simpler from (P_2 * v_2 / T_2) = (P_5 * v_5 / T_5) (with v_5 = v_2):
T_5 = T_2 * P_5 / P_2 = 293.15 * 2.67 / 1.013 = 772.7 K
Or directly: T_5 = P_5 * v_5 / R 
T_5 = (2.67*10^5) * 0.831 / (8.314/(28.97*10^-3) = 773.1 K
Again, u_5 at P_5 and T_5 can be found from the air tables:
u_5 = 272.5 kJ/kg

Net work and efficiency

The net work per kg:
w_cycle = (h_4 – h_3) – (u_5 – u_2) = (1736.1 – 649.3) – (351.9 - -89.16) = 645.7 kJ/kg

Net efficiency:
eta = 1 – (u_5 – u_2) / (h_4 – h_3) = 1 - (351.9 - -89.16) / (1736.1 – 649.3) = 0.594

Net work and efficiency (not using FluidProp, constant γ)

The net work per kg:
w_cycle = (h_4 – h_3) – (u_5 – u_2) = (1881.1 – 715.2) – (272.5 - -89.16) = 804.3 kJ/kg

Net efficiency:
eta = 1 – (u_5 – u_2) / (h_4 – h_3) = 1 - (272.5 - -89.16) / (1881.1 – 715.2) = 0.690
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Efficiency of the ideal Diesel cycle
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Comparison Brayton, Otto, Diesel

• If qINPUT is the same: Diesel gives less 

net work output

• Therefore DIESEL is lower for the 

same  () and Tmin and Tmax

• But DIESEL can be much higher than 

OTTO and BRAYTON

0
s [kJ/kg · K]

v= const.

P= const.

Otto cycle

Diesel cycle

Brayton cycle
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Stirling engine

• Closed cycle

• Isochoric heating and cooling

• Isothermal compression and 

expansion

• Complex

• Also reversed (cooling-heat pump)
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Fuel Cells

• Direct conversion of fuel into 
electricity with no thermodynamic 
cycle: efficiency very high

• Controlled reaction between fuel and 
oxidizer to produce electricity

• Continuous feed of fuel and oxidizer
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Fuel cell: principle of operation

• Porous electrodes between O2 and H2

• Electrolyte (solid or liquid) limits reaction rate

• H2 diffuses through anode, is absorbed on 

surface of cathode and reacts with OH¯ in the 

electrolyte and forms H2 O, yielding free electrons

• O2 diffuses through the cathode, is absorbed by 

the surface, and reacts with H2 O forming OH¯

• H2 O is formed at the anode and decomposed at 

the cathode, 

• Electrons are produced at the cathode and 

provide electrical current for loads
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Fuel cells characteristics

• Combinations of fuel/oxydizer/electrolyte operated at difference temperatures: 
PEM, SOFC, MCFC,…

• The fuel cell is not a “thermal engine”: the electrochemical process is isothermal 
 Carnot efficiency is irrelevant

• Electrochemical reactions are more efficient than combustion + thermal engine

• Maximum theoretical efficiency of fuel cell is 100% (real is up to 60%)

• Stationary and propulsion applications but problem: initial investment cost
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Combined cycle 
power plant

• Thermal power discarder by a gas 
turbine powers a steam cycle turbine 
(HRSG)

• Electrical Efficiency > 60 % (NG)

• Thermodynamic optimization: lower 
efficiency of gas turbine

• Solar combined-cycle technology?

Heat recovery
steam generator

Bottoming steam power plant

Gas Turbine

Air

Water injection

Blade cooling

Fuel

F

F

H

H

H

H
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Co-
 

and trigeneration

• Residential and process heating: 
temperature level

• Better use of primary energy: convert 
into electrical and thermal (or cooling) 
power at the same time

• Cogeneration of heat and power (CHP) 
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Example: comparison of CHP with 
conventional supply

Efficiencies 

ORC turbogenerator, electrical 0.18 (18%)

ORC CHP system (el+heat) 0.96 (96%)

Average EU power plants, electrical 0.35 (35%)

Average grid losses 0.06 (6%)

Non-condensing boiler, thermal 0.87 (87%)

Power [kW]

ORC turbogenerator, electrical 120

INPUT DATA

W

•Cogen and conventional: same electrical and thermal power output
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CHP: 
comparison with conventional supply

Power [kW]

Electrical power output 120

ORC turbogenerator, total input power 667

ORC turbogenerator, cogen thermal (90°C) 525

Input power, conventional power plant 365

Boiler, thermal power (90°C) 525

Input power, conventional boiler 603

Total input power (Power Plant + boiler) 968

,W Q

•Efficiency gain of CHP system = 31.1 %
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Exergy Analysis: basic observations

• Work if the system is not in equilibrium 
with the surrounding

• Maximum work between Tmax and Tmin: 
Carnot cycle

• What is the maximum amount of work 
that can be extracted from a system 
(optimization)?

•Tmax

•s

•T

•Tmin
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Tmd
 

engineer’s questions

• Given a system made of components 
(sub-systems), which are most 
responsible for thermodynamic 
dissipation?

• Given two different energy systems 
operating between different temperature 
level, which one is operating better given 
its potential?

•?
•?

•?

•?

•?

•TIT = 150 °C

•TIT = 1300 °C

•Geothermal

= 0.11

= 0.35
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Available Energy

• Example: steady flow 
device

• What is the maximum 
power it can generate? 
(given some amount of 
energy, how much ENERGY 
is available to be converted 
into useful work?)

• Apply I and II law of 
thermodynamics
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Accounting:
Energy balance: energy inflow rate = energy outflow rate (No accumulation)
M’ * h_1 = M’ * h_2 + W’ + Q’0

Entropy balance: 
Rate of entropy production = Entropy outflow rate – Entropy inflow rate
= (M’ * s_1 + Q’0 / T0) – M’ * s_2

Combining

W’ = M’ [(h1 – T0 * s_1) – (h2 – T0 * s_20 ] – T0 * P’s

II-Law : P’s >=0
Definition of a function ex = h – T0 * s

W’ <= M’ (ex_1 – ex_2) = EX_1 – EX_2
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A new thermodynamic function

   1 0 1 2 0 2 0

0

sW M h T s h T s T

h T s
M

       
 



  P

e
E e

•
 

Ps: thermodynamic loss (irreversibility)

• In analogy with the example: calculation of Ps for 
every component-> primary causes of inefficiency

•
 

Ps ‘s has environmental and economic consequences
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Result of the analysis

   1 0 1 2 0 2 0

0

sW M h T s h T s T

h T s
M

       
 



  P

e
E e

•
 

Ps: cannot be avoided

• Max      if state 2 is at T0 and P0

• If T2 is greater than T0 : cogeneration!

• If P2 is greater than P0 , add a turbine stage

• (P2 must be slightly greater than P0 )

W
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SPARE SLIDES
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Thermodynamics and design (1)

• Pollution and global climate 
change

• Sustainable: it does not 
deplete permanently earth 
resources, (and it does not 
harm etc.)

• Sustainable energy systems 
exist: how to beat fossil-fuel 
based?

• First: reduce waste!

• What is the cost of energy?
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Heat recovery
steam generator

F

F

H

H

H

H

Thermodynamics and design (2)

Design criteria:

• Sustainability (life cycle 
analysis, waste, recycle 
measures, etc.)

• Cost (Initial, operational, etc)

• Weight

• Volume

• Aesthetics

• …

Analysis and optimization is based on
system simulations:
Static and Dynamics
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The future?

• Distributed energy conversion

• Solar, wind, geothermal, biomass, 

tidal, OTEC, etc.

• Energy storage and batteries

• Public transportation, electric cars 

(batteries for baseload storage?)

• …
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