wb1224 - Thermodynamics 2 Lecture 9 - Energy Conversion Systems

Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 8-12-2010

Content Lecture 9 - overview

- Organization
- Soft start:
 - What is it about, why it is relevant, how is it done
 - > Objectives (examples)
- Review of concepts from Thermodynamics 1
- The Rankine cycle

We study thermodynamics because... (You can give your own answer)

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that."

Thomas Edison (1847-1931) to Henry Ford (1863-1947) in 1931.

With it engineers can help solving the most critical problems and improve life quality

Organization

 Course Reader: draft of W.C. Reynolds and P. Colonna "THERMODYNAMICS Fundamentals and Engineering Applications" (Please HELP ME!)

Chapters 7 (energy systems) and 9 (exergy)

• M.J. Moran, H.N. Shapiro "Fundamentals of Engineering Thermodynamics"

Chapters 8, 9, 10 (energy systems) and 7 (exergy)

Assistant: ir. Emiliano Casati (<u>E.Casati@TUDeft.nl</u>)

Thermodynamic (Energy) Systems

- Energy conversion for <u>something useful</u>
- Modern society: electricity, refrigeration, heating
- In common:

An energy source (fuel, solar radiation, geothermal heat, biomass, waste heat)

A fluid undergoing transformations (mechanical work, heat transfer, ...)

➤An energy sink

6

Example: Turboprop

Gas Turbine Engine

Start Video

It is relevant! There is a lot to do

- We need **clean energy** systems for sustainable development
- Energy conversion for anything considered a primary need:
 - ➤Food and water
 - ≻Health

{Ⅲ

- ➢ Housing
- Instruction
- ➢ Mobility
- Access to information
- Computers
- ≻…

TUDelft

Political stability

EXAMPLE

per-capita energy consumption in 2004:

- 8 toe/year in North America
- 3.5 toe/year in OECD Europe
- 0.6 toe/year in Africa

More on my web page: <u>Energy: an outlook, from the global situation to</u> my vision of academic research

Let's start! Accounting of basic quantities

production = output^{*} – input^{*} + accumulation or accumulation = input – output + production accumulation = final – initial ALSO ON A RATE BASIS

CONSERVATION \implies PRODUCTION =0 ($\mathcal{P} = 0$)

* input and output entering and leaving the system

Analysis methodology How to be systematic

- 1. Sketch the system and define the boundary (in a clever way)
- 2. Indicate the reference frame
- 3. List simplifying assumptions
- 4. Indicate time period or rate basis
- 5. Indicate on the sketch all terms of balance equations
 - Transfers (arrows), accumulation, production. Nomenclature
- 6. Write balance equations (per terms defined on the sketch)
- 7. Bring in other equations # equations = # unknowns (symbols!)

{||||

Example: Volumetric Air Compressor

Energy transfer as work

- Thermodynamics: **energy** is a conserved property of matter
- Work is energy transfer
- MICRO: work is the only mechanism of energy transfer
- MACRO: all particle can be observed moving (detectable distance)
 - >Example: work done by expanding gas

Example: work done by an expanding gas

Energy transfer as heat

- Internal Energy: energy stored in the random motion of molecules
- Heat: microscopically random/disorgnized transfer of energy
- **IMPORTANT:** understand phenomena at microscopic level!

Delft

{|||

TUDelft

Wb1224 – Energy Conversion Systems

Control volume energy analysis (2)

Enthalpy and mass-associated energy transfer

$$e + Pv = \left(u + \frac{w^2}{2} + gz\right) + Pv = h + \frac{w^2}{2} + gz$$

Enthalpy does not accumulate!

h is mass-associated energy transfer and NOT mass-associated energy storage

Rate-basis Energy Balance

$$\underbrace{\left(\underbrace{e+Pv}_{1}\dot{M}_{1}+\dot{Q}}_{\text{rate of energy input}}=\underbrace{\left(e+Pv\right)_{2}\dot{M}_{2}+\dot{W}}_{\text{rate of energy output}}+\underbrace{\frac{dE_{\text{CV}}}{dt}}_{\text{rate of energy accumulation}}$$

End of Review: Reynolds and Colonna, Chap. 7

Analysis of thermodynamic systems

- Working fluid
- Cycle (open or closed)
- Fluid properties (tables and FluidProp)
- Thermodynamic charts (meaning of areas in cycles)
- Process flow diagram
- Mass, energy and entropy balances

Always sketch on paper!

TUDelft

Graphical representation of processes in thermodynamic diagrams

The Rankine cycle Steam power plants

- It started in the 19th century: steam engines. Rankine, Clausius, Kelvin: basis of thermodynamics
- Electricity in the world steam power plants
- Also for renewable (solar, biomass)
- Turbomachinery

Superheated Rankine cycle calculation: The process

(Real plants are more complicated)

TUDelft

Rankine cycle analysis: Input data

INPUT DATA: operating parameters

- State 1, saturated liquid at 303.15 K
- State 2, 8 MPa (80 bar)
- State 3, superheated steam at 673.15 K
- State 4, 303.15 K

INPUT DATA: components efficiencies

- Pump: η_{is, pump}=0.65
- Turbine: $\eta_{is, turb} = 0.85$

TUDelft

Assumptions

- Kinetic and potential energies negligible at states 1, 2, 3, and 4
- Pump and turbine adiabatic
- Perfect electrical generator: $\eta_{\rm gen} = 100\%$
- System is at steady state
- Water is in thermodynamic equilibrium at states 1, 2, 3, and 4
- No pressure drop along the heat exchangers and the connecting ducts

Analysis is made per unit of mass flow (independent of mass flow rate)

Real pump process

Pump work (state 1 & 2)

	Aicrosoft Excel	- Water Ta	ables.xls								
:1	<u>Eile E</u> dit <u>V</u> ie	w <u>I</u> nsert	Format To	ols <u>D</u> ata	Window H	elp Ado <u>b</u> e l	PDF		Type a que	estion for help	8 ×
10	12 🖬 🖪 🔒		ABS 13)	6 6 6.	🦪 🔊 🗸	CH - 1 8	Σ - <u>A</u> ↓	XI 🛄 🛷	100% -	0 -	
Ari	al	• 10 •	BIU		= 🔤 🛒	% , 5	8 308 111	• 🗞 • <u>A</u>	- 21	🥆 🖞 🗐 🔊	🛃 📜 🤁 📮
-										Tecplot	
	К2 🔻	fx								-	2
	A	В	С	D	E	F	G	Н	1	J	К 🔦
1	Propertie	s of Sa	turated	Water	(vapor-	Liquid)	as a Fi	unction	of Ten	peratu	re
2											
				107						10 m	7.2
3	The	rmodynam	nic model:	11-97							
3	The	rmodynam	nic model:	11-97							
3 4 5	The	rmodynam	Specific	volume	Internal	Energy	Enth	alpy	Entr	ору	
3 4 5 6	The Temperature	rmodynam Pressure	Specific	volume Vapor	Internal Liquid	Energy Vapor	Enth Liquid	alpy Vapor	Entr Liquid	ropy Vapor	
3 4 5 6 7	The Temperature ⁰C	rmodynam Pressure bar	Specific Liquid m3/kg	volume Vapor m3/kg	Internal Liquid kJ/kg	Energy Vapor kJ/kg	Enth Liquid kJ/kg	alpy Vapor kJ/kg	Entr Liquid kJ/kg.K	ropy Vapor kJ/kg.K	
3 4 5 6 7 24	The Temperature °C 30	Pressure bar 0.042467	Specific Liquid m3/kg 0.0010044	volume Vapor m3/kg 32.882	Internal Liquid kJ/kg 125.74	Energy Vapor kJ/kg 2415.9	Enth Liquid kJ/kg 125.75	alpy Vapor kJ/kg 2555.6	Entr Liquid kJ/kg.K 0.4368	Vapor kJ/kg.K 8.4521	
3 4 5 6 7 24 25	The Temperature °C 30 32	Pressure bar 0.042467 0.047592	Specific Liquid m3/kg 0.0010044 0.0010050	volume Vapor m3/kg 32.882 29.529	Internal Liquid kJ/kg 125.74 134.10	Energy Vapor kJ/kg 2415.9 2418.7	Enth Liquid kJ/kg 125.75 134.11	alpy Vapor kJ/kg 2555.6 2559.2	Entr Liquid kJ/kg.K 0.4368 0.4643	Vapor kJ/kg.K 8.4521 8.4115	
3 4 5 6 7 24 25 26	Temperature °C 30 32 34	Pressure bar 0.042467 0.047592 0.053247	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057	volume Vapor m3/kg 32.882 29.529 26.562	Internal Liquid kJ/kg 125.74 134.10 142.46	Energy Vapor kJ/kg 2415.9 2418.7 2421.4	Enth Liquid kJ/kg 125.75 134.11 142.47	alpy Vapor kJ/kg 2555.6 2559.2 2562.8	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916	Vapor kJ/kg.K 8.4521 8.4115 8.3715	
3 4 5 6 7 24 25 26 27	The Temperature °C 30 32 34 36	Pressure bar 0.042467 0.047592 0.053247 0.059475	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010064	volume Vapor m3/kg 32.882 29.529 26.562 23.932	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323	
3 4 5 6 7 24 25 26 27 28	The Temperature °C 30 32 34 36 38	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010064 0.0010071	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0 2426.7	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187 0.5457	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936	
3 4 5 6 7 24 25 26 27 28 29	The •C 30 32 34 36 38 40	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324 0.073844	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010057 0.0010064 0.0010071 0.0010079	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595 19.517	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18 167.53	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0 2426.7 2429.4	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18 167.54	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0 2573.5	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4643 0.4916 0.5187 0.5457 0.5724	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936 8.2557	
3 4 5 6 7 24 25 26 27 28 29 30	The •C 30 32 34 36 38 40 42	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324 0.073844 0.08209	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010057 0.0010071 0.0010079 0.0010087	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595 19.517 17.665	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18 167.53 175.89	Energy Vapor kJ/kg 2415.9 2421.4 2424.0 2426.7 2429.4 2432.1	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18 167.54 175.90	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0 2573.5 2577.1	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187 0.5457 0.5724 0.5990	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936 8.2557 8.2183	
3 4 5 6 7 24 25 26 27 28 29 30 31	The Temperature °C 30 32 34 36 38 40 42 44	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324 0.073844 0.08209 0.091118	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010057 0.0010057 0.0010071 0.0010079 0.0010087 0.0010095	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595 19.517 17.665 16.013	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18 167.53 175.89 184.25	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0 2426.7 2429.4 2432.1 2434.8	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18 167.54 175.90 184.26	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0 2573.5 2577.1 2580.7	Enti Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187 0.5457 0.5724 0.5990 0.6255	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936 8.2557 8.2183 8.1816	m
3 4 5 6 7 24 25 26 27 28 29 30 31 32	The Temperature °C 30 32 34 36 38 40 42 44 46	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324 0.073844 0.08209 0.091118 0.100988	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010057 0.0010057 0.0010071 0.0010079 0.0010087 0.0010095 0.0010095	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595 19.517 17.665 16.013 14.535	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18 167.53 175.89 184.25 192.61	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0 2426.7 2429.4 2432.1 2434.8 2437.4	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18 167.54 175.90 184.26 192.62	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0 2573.5 2577.1 2580.7 2584.2	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187 0.5457 0.5724 0.5990 0.6255 0.6517	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936 8.2557 8.2183 8.1816 8.1454	
3 4 5 6 7 24 25 26 27 28 29 30 31 32 33	The Temperature °C 30 32 34 36 38 40 42 44 46 48	Pressure bar 0.042467 0.047592 0.053247 0.059475 0.066324 0.073844 0.08209 0.091118 0.100988 0.111764	Specific Liquid m3/kg 0.0010044 0.0010050 0.0010057 0.0010057 0.0010071 0.0010079 0.0010079 0.0010087 0.0010095 0.0010103 0.0010112	volume Vapor m3/kg 32.882 29.529 26.562 23.932 21.595 19.517 17.665 16.013 14.535 13.213	Internal Liquid kJ/kg 125.74 134.10 142.46 150.82 159.18 167.53 175.89 184.25 192.61 200.96	Energy Vapor kJ/kg 2415.9 2418.7 2421.4 2424.0 2426.7 2429.4 2432.1 2434.8 2437.4 2437.4 2440.1	Enth Liquid kJ/kg 125.75 134.11 142.47 150.82 159.18 167.54 175.90 184.26 192.62 200.98	alpy Vapor kJ/kg 2555.6 2559.2 2562.8 2566.4 2570.0 2573.5 2577.1 2580.7 2584.2 2587.8	Entr Liquid kJ/kg.K 0.4368 0.4643 0.4916 0.5187 0.5457 0.5724 0.5990 0.6255 0.6517 0.6778	Vapor kJ/kg.K 8.4521 8.4115 8.3715 8.3323 8.2936 8.2557 8.2183 8.1816 8.1454 8.1099	

Use "Water Tables.xls"

Energy transfer to the boiler (state 3)

Turbine work (state 4)

vapor quality (vapor fraction) $\overline{q} = \frac{\overline{s} - s_L}{s_V - s_L} = \frac{\overline{h} - h_L}{h_V - h_L}$

Efficiency, Power, Mass flow rate

Final remarks

- Learn how to do it on paper + tables (exam)
- Be precise with the units!
- Use FluidProp to make your own tables: by making tables you learn how to use them
- Explore "Superheated Rankine Cycle.xls": you can use is to check exercises (you may need to modify it a bit)

