Meerkeuzevragen

1. According to the second law, $\left(\frac{\partial \bar{v}}{\partial p}\right)_{T}$ is always:
a) ≥ 0 (positive) and for incompressible liquids $\rightarrow 0$
b) ≥ 0 (positive) and for incompressible liquids $\rightarrow+\infty$
c) ≤ 0 (negative) and for incompressible liquids $\rightarrow 0$
d) ≤ 0 (negative) and for incompressible liquids $\rightarrow-\infty$
2.

a) The enthalpy has a molecular interpretation as the mean kinetic and potential energy of all considered molecules
b) The enthalpy is a pragmatic quantity, which is useful for closed isobaric systems and for open processes
c) The enthalpy is a measure for the number of molecular configurations
d) The enthalpy is a conserved property; it can not be created or destroyed, but only converted
3. The heat capacity at constant pressure is
a) $c_{p}=\left(\frac{d h}{d T}\right)_{p}=T\left(\frac{d s}{d T}\right)_{p}$
b) $\quad c_{p}=\left(\frac{d u}{d T}\right)_{p}=T\left(\frac{d s}{d T}\right)_{p}$
c) $\quad c_{p}=\left(\frac{d h}{d T}\right)_{p}=T\left(\frac{d q}{d T}\right)_{p}$
d) $c_{p}=\left(\frac{d h}{d T}\right)_{p}=T\left(\frac{d s}{d T}\right)_{v}$
4. The fundamental equation for the internal energy U is given as
a) $U\left(V, S, \mu_{i}\right)$
b) $U\left(V, T, \mu_{i}\right)$
c) $U\left(V, S, n_{i}\right)$
d) $U\left(V, T, n_{i}\right)$
5. The Clausius equation in the form $\left(\frac{d p}{d T}\right)_{I \rightarrow I I}=\frac{\Delta^{I \rightarrow I I} \bar{h}}{T\left(\bar{v}^{I I}-\bar{v}^{I}\right)}$ (where I and II are
indices for a phase I and phase II, respectively) can be applied to
a) the vapor pressure curve, only
b) the vapor pressure and the sublimation pressure curve
c) the vapor pressure and the melting pressure curve
d) the vapor pressure, the sublimation pressure curve, and the melting pressure curve
6. The Clausius-Clapeyron equation in the form $\ln \left(\frac{p_{2}}{p_{1}}\right)=-\frac{\Delta^{I \rightarrow I I} \bar{h}}{\bar{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$ (caution: in an earlier version of this document the natural logarithm in this equation was missing) can be derived from the Clausius equation (question 3) by assuming:
a) $\bar{v}^{\text {vapor }} \gg \bar{v}^{\text {liquid }}$, ideal gas the vapor, isochoric process
b) $\bar{v}^{\text {vapor }} \gg \bar{v}^{\text {liquid }}$, ideal gas the vapor, $\delta Q=0$ (adiabaat)
c) $\bar{v}^{\text {vapor }} \gg \bar{v}^{\text {liquid }}$, ideal gas for vapor, chemical potential is constant
d) $\bar{v}^{\text {vapor }} \gg \bar{v}^{\text {liquid }}$, ideal gas for vapor, enthalpy of vaporization is constant
7. The Van der Waals equation of state (with positive parameters a and b) has the form
a) $p=\frac{\bar{R} T}{\bar{v}+b}-\frac{a}{\bar{v}^{2}}$
b) $p=\frac{\bar{R} T}{\bar{v}+b}+\frac{a}{\bar{v}^{2}}$
c) $p=\frac{\bar{R} T}{\bar{v}-b}-\frac{a}{\bar{v}^{2}}$
d) $p=\frac{\bar{R} T}{\bar{v}-b}+\frac{a}{\bar{v}^{2}}$
8. The chemical potential of a pure component:
a) is equal to the Gibbs energy. It can be calculated knowing the vapor pressure curve of a substance and the ideal gas heat capacity.
b) is equal to the Gibbs energy. It can be calculated knowing the entropy of a substance and the ideal gas heat capacity
c) can be calculated as a departure function $\frac{\mu-\mu^{i g}}{\bar{R} T}=\ln \varphi$ where φ is the fugacity coefficient. The fugacity coefficient can be determined from dimensionless diagrams or from equations of state
d) can be calculated as a departure function $\frac{\mu-\mu^{i g}}{\bar{R} T}=\ln \varphi$ where φ is the compressibility factor. The departure function can be determined from dimensionless diagrams
9. Partial molar property \bar{M}_{i} of substance i is:
a) defined as $\left(\frac{\partial M}{\partial n_{i}}\right)_{p, V, n_{j \neq i}}=\bar{M}_{i}$
b) defined as $\left(\frac{\partial M}{\partial n_{i}}\right)_{p, T, n_{j * i}}=\bar{M}_{i}$
c) defined as $\left(\frac{\partial M}{\partial n_{i}}\right)_{V, T, n_{j * i}}=\bar{M}_{i}$
d) defined as $\left(\frac{\partial M}{\partial n_{i}}\right)_{T, n_{j i t}}=\bar{M}_{i}$

Meerkeuzevragen 10-12: over exergie en stoomkringprocessen

Opgave 1

a) Derive an equation for the changes of the internal energy, $d \bar{u}$, that can be evaluated with an equation of state $f(p, V, T)$ and a heat capacity. Start from $d \bar{u}=\left(\frac{\partial \bar{u}}{\partial T}\right)_{\bar{v}} d T+\left(\frac{\partial \bar{u}}{\partial \bar{v}}\right)_{T} d \bar{v}$
b) Draw an $h-T$ diagram of a pure substance. Label the vapor and the liquid phase and the ideal gas line
c) Draw an isotherm of the Van der Waals equation of state where a liquid and a vapor coexist. Show the regions of stability, metastability, and instability
d) Make a diagram of the chemical potential with temperature of a vapor. Support your diagram with the equation of the chemical potential of an ideal gas.
e) Is the pressure of a real gas (for given \bar{v}, T) always lower than the ideal-gas; is it always higher; or can it be both lower or higher? Support your answer with a diagram of the second virial coefficient $B(T)$ as a function of temperature. The virial equation of state is $p \bar{v} /(\bar{R} T)=1+B(T) / \bar{v}$
f) Assume you have given a function for the Gibbs energy G as $G\left(p, T, n_{i}\right)$. Derive expressions for S, V, H, U, c_{p}
g) Given 2 vapor pressure data points of propane ($p^{\text {sat }}(T=253.15 \mathrm{~K})=2.444$ bar and $\left.p^{\text {sat }}(T=263.15 \mathrm{~K})=3.451 \mathrm{bar}\right)$, estimate the vapor pressure at $25^{\circ} \mathrm{C}$ using the Clausius-Clapeyron equation.
h) Estimate the specific enthalpy of vaporization of propane in the temperature range (in units $\mathrm{kJ} / \mathrm{kg}$) given in problem g). The molecular mass of propane is $M_{\text {C3H8 }}=44.1 \mathrm{~g} / \mathrm{mol}$.

Opgave 2

Ethylene at $320 K$ and 20 bar enters a compressor operating at steady state and is compressed to 100 bar with an outlet temperature of 380 K . The heat addition (negative) is $\dot{Q}_{c v} / \dot{m}=-74.0 \mathrm{~kJ} / \mathrm{kg}$. Kinetic and potential energy changes are negligible.

Molecular mass of ethylene is $M_{\text {Ethylene }}=28.05 \mathrm{~g} / \mathrm{mol}$; the ideal-gas heat capacity can be treated as constant with $c_{p}^{i g}=84.0 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$ in the considered temperature range. The heat transfer can be assumed to be realized at the average temperature of $T^{t^{\text {rans }}}=350 \mathrm{~K}$.

Using the departure function diagrams
a) Evaluate the work required (in kJ per kg of ethylene flowing through the compressor) assuming the absence of internal irreversibilities
b) Calculate the entropy production (per kg of ethylene flowing through the compressor)

Recalculate the enthalpy departure function for the inlet condition using the virial equation of state $p \bar{v} /(\bar{R} T)=1+B(T) / \bar{v}$:
c) Calculate the molar volume at the inlet condition according to the virial equation of state
d) Derive the formula for the enthalpy departure from the virial equation of state
e) Estimate the enthalpy departure function at the inlet condition.
$B(T=310 K)=-129.0 \mathrm{~cm}^{3} / \mathrm{mol}$
$B(T=320 K)=-120.0 \mathrm{~cm}^{3} / \mathrm{mol}$
$B(T=330 K)=-111.0 \mathrm{~cm}^{3} / \mathrm{mol}$

Opgave 3

(over exergie en stoomkringprocessen)

Meerkeuzevragen

C
B
A
$4 \mathrm{U}(\mathrm{V}, \mathrm{S}, \mathrm{ni})$ er zat nog een fout in de opgave (nieuwe versie staat op BB)
5 D
6 D
7 C
8 C
9 B
opgave 1
a) find \bar{u} as a fct of P, T, \bar{v} and c_{v} or c_{p}

$$
\begin{aligned}
& \begin{array}{r}
d \bar{u}=\left(\frac{\partial \not{ }_{2}}{\partial}\right)_{\bar{v}} d \tau+\left(\frac{\partial \bar{u}}{\partial \bar{v}}\right)_{T} d \bar{v} \\
d \\
d \bar{v}=T d \bar{s}-p d \bar{v}
\end{array} \\
& \left(\frac{\partial \bar{u}}{\partial \bar{v}}\right)_{T}=T\left(\frac{\partial \bar{s}}{\partial \bar{v}}\right)_{T}-P\left(\frac{\partial 屯}{\partial V_{\tau}}\right. \\
& =\left(\frac{\partial p}{\partial T}\right)_{\bar{v}} \text { Maxwell relaties } \\
& \begin{array}{c}
-\bar{s} \cdot \bar{u} \bar{u} \\
\bar{n} \cdot p^{\circ} \cdot \underline{f} \bar{f}
\end{array} \\
& \Rightarrow d \bar{u}=c_{v} d T+\left[T\left(\frac{\partial p}{\partial T}\right)_{\bar{v}}-p\right] d \bar{v}
\end{aligned}
$$

b)

c)

d) chemisch potentiaal als fot. van or

$\mu=\bar{g}$ en $\bar{g}(p, T)$ pure comp.

$$
\begin{aligned}
& \Rightarrow d \bar{g}=\left(\frac{\partial \bar{g}}{\partial p}\right)_{T} d p+\left(\frac{\partial \bar{y}}{\partial T}\right)_{p} d T \\
& d \bar{g}=\bar{v} d p+(-\bar{s}) d T \\
& \Rightarrow d p=-\bar{s} d T \text { voor } p=\text { const. }
\end{aligned}
$$

\Rightarrow negatieve helling
e) virial toestandsuerg.

$$
Z=\frac{p \bar{v}}{\bar{R} T}=\underbrace{1}_{\text {ideaal gas }}+\underbrace{B(T) \frac{1}{v}}_{\text {kan gioter }}
$$ aandeel en kleines zijn als 0

$\Rightarrow p$ van reëel gas kan groter of kleiner ziji als pideral gas
f)

$$
\begin{aligned}
& \begin{array}{lrl}
S=-\left(\frac{\partial G}{\partial T}\right)_{\rho} & \text { from } & -S_{H R} U V_{+} \\
V=+\left(\frac{\partial G}{\partial p}\right)_{T} & & -P G T_{+}
\end{array} \\
& H=? \quad G=H-T S \Rightarrow H=G-T\left(\frac{\partial G}{\partial T}\right)_{\rho} \text { (*) } \\
& U=? \quad G=U+p v-T S \quad \Rightarrow \quad U=G+p\left(\frac{\partial G}{\partial p}\right)_{T}-T\left(\frac{\partial G}{\partial T}\right)_{p} \\
& c_{p}=? \quad C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}=\underset{\text { met (*) }}{=}\left(\frac{\partial G}{\partial T}\right)_{p}-\left\{\left(\frac{\partial G}{\partial T}\right)_{p}+T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{p}\right\} \\
& C_{p}=-T\left(\frac{\partial^{2} G^{2}}{\partial T^{2}}\right)_{p}
\end{aligned}
$$

g)

$$
\begin{aligned}
& p_{1}=p^{\text {sat }}(253.15 \mathrm{~K})=2.444 \text { bor } \\
& p_{2}=p^{\text {sat }}(263.15 \mathrm{~K})=3.451 \text { bor } \\
& p_{3}=p^{\text {sat }}(298.15 \mathrm{~K})=?
\end{aligned}
$$

Clausius -Clapeyron $\ln \frac{p_{2}}{p_{1}}=-\frac{\Delta^{v a p} \bar{h}}{\bar{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$

$$
\begin{aligned}
\Rightarrow \frac{\Delta^{\operatorname{vap}} \bar{h}}{\bar{R}}=-\frac{\ln \frac{p_{2}}{p_{2}}}{\frac{1}{T_{2}}-\frac{1}{T_{2}}}=\frac{\ln \frac{3.451}{2.444}}{\frac{1}{263.15 \mathrm{~K}}-\frac{1}{253.15 \mathrm{~K}}}=2298 \mathrm{~K} \\
\begin{aligned}
\ln \frac{p_{3}}{p_{2}} & =-\frac{\Delta^{\operatorname{vap} \bar{h}}}{\bar{R}}\left(\frac{1}{T_{3}}-\frac{1}{T_{2}}\right) \\
\Rightarrow p_{3} & =p_{2} \cdot \exp \left(-\frac{A^{\operatorname{vap}} \bar{h}}{\bar{R}}\left(\frac{1}{T_{3}}-\frac{1}{T_{2}}\right)\right) \\
& =3.451 \text { bor } \cdot \exp \left(-2298 \mathrm{~K}\left(\frac{1}{298.15 \mathrm{KK}}-\frac{1}{263.15 \mathrm{~K}}\right)\right) \\
p_{3} & =9.62 \text { bar }
\end{aligned}
\end{aligned}
$$

h) wij hadden in g):

$$
\begin{aligned}
& \frac{\Delta^{\text {vap }} \bar{h}}{\bar{R}} \approx 2298 \mathrm{~K} \text { voor } 253 \mathrm{~K}<\Gamma<263 \mathrm{~K} \\
& \Delta^{\text {vap }} \bar{h}=8.314 \frac{\mathrm{~d}}{\mathrm{~mol} \cdot \mathrm{k}} \cdot 2298 \mathrm{~K}=19.11 \frac{\mathrm{kf}}{\mathrm{~mol}} \\
& \Delta^{\text {vap }} \bar{h}=\Delta^{\text {vap }} \bar{h} / \mathrm{M}_{\text {propanc }}=\frac{19110 \frac{\mathrm{kt}}{\mathrm{kmol}}}{44.1 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=433 \frac{\mathrm{kf}}{\mathrm{~kg}}
\end{aligned}
$$

opgave 2

- steady state
- kinetic el potential energy changes \varnothing
- compressor: LUcy has to be negative (opposite to direction of arrow)

$$
-\dot{Q}_{c v} / \dot{m}=-74.0 \frac{\mathrm{kf}}{\mathrm{~kg}}
$$

ethylene: $M_{\mathrm{CLH}_{4}}=28.05 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
\begin{aligned}
& c_{p}^{i g}=84.0 \frac{\mathrm{f}}{\mathrm{~mol} \cdot \mathrm{k}} \\
& T_{c}=283 \mathrm{~K}, \quad p_{c}=51.2 \text { bar } \quad \text { (Moran \& Shapiro) }
\end{aligned}
$$

preparing the use of departure fut diagrams ($A-4 \& A-5$)

$$
\begin{array}{ll}
T_{R 1}=\frac{T_{1}}{T_{c}}=\frac{320 \mathrm{~K}}{283 \mathrm{~K}}=1.13 & T_{R 2}=1.34 \\
p_{R 1}=\frac{p_{1}}{p_{c}}=\frac{20 \mathrm{bar}}{51.26 \mathrm{ar}}=0.39 & p_{R 2}=1.95
\end{array}
$$

from A-4 \& A-5:

$$
\begin{aligned}
& \left(\frac{\bar{h}-\bar{h}^{i g}}{\bar{R} T_{c}}\right)_{1}=-0.3 \\
& \left(\frac{\bar{s}-\bar{s}^{-i g}}{\bar{R}}\right)_{1}=-0.25
\end{aligned}
$$

$$
\left(\frac{\bar{L}-T^{i g}}{\hat{R} T_{c}}\right)_{2}=-1.65
$$

$$
\left(\frac{\bar{s}-\overline{s i g}}{\bar{R}}\right)_{2}=-0.75
$$

balance eq.s.
mass balance: $\quad \frac{d m_{k v}}{d t_{0}}=\dot{m}_{1}-\dot{m}_{2}:=\dot{n_{n}}$

$$
\Rightarrow \frac{\dot{W}_{c v}}{\dot{m}}=\frac{\dot{Q}_{c v}}{\dot{m}}-\left(h_{2}-h_{2}\right)
$$

entropy balance (second law)

$$
\frac{d S_{k_{v}}}{d t}=\frac{\dot{Q}_{c v}}{T \text { transit }}+\dot{m}_{1} s_{2}-\dot{m}_{2} s_{2}+\dot{\sigma}_{c v}
$$

$$
\Rightarrow \frac{\dot{Q}_{c v} / \dot{u}}{\text { Ttronst }}=\left(s_{2}-s_{1}\right)-\dot{G}_{c v} / \text { in }
$$

a)

$$
\begin{aligned}
& \frac{\dot{W}_{c v}}{\dot{m}}=? \\
& \frac{\dot{L}_{c v}}{\dot{m}}=\frac{\dot{Q}_{c v}}{\dot{m}}-\left(h_{2}-L_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\bar{L}_{2}^{i g}-\bar{L}_{1}^{i g}\right)=\int_{T_{1}}^{T_{2}} c_{p}^{i g} d \Gamma \\
& =c_{p}^{i g}\left(T_{2}-T_{1}\right) \\
& =-74 \cdot \frac{\mathrm{~kg}}{\mathrm{~kg}}-\frac{1}{28.05 \frac{\mathrm{~kg}}{\mathrm{kmol}}}\left[8.314 \frac{\mathrm{kf}}{\mathrm{kmol} \cdot k} \cdot 285 \mathrm{~K}\{-1.65+0.3\}\right. \\
& \left.+84 \frac{\mathrm{kf}}{\operatorname{kemvi} \cdot \mathrm{~K}}(380-320) \mathrm{K}\right] \\
& =(-74 .-66.4) \frac{k f}{k y} \\
& \frac{\dot{W}_{c v}}{\dot{m}}=-140.4 \frac{48}{\mathrm{hg}} \\
& \text { c) } \frac{\dot{G}_{C V}}{\dot{m}}=\text { ? } \\
& \frac{\dot{\sigma}_{C N}}{\dot{m}}=-\frac{Q_{C V} / \dot{m}}{T^{\text {transit }}}+\underbrace{}_{=-\frac{S_{z}-S_{1}}{S_{\text {Methyl }}}\left[\left(\bar{S}-\bar{S}^{i g}\right)_{2}-\left(\bar{s}-\bar{s}^{i g}\right)_{1}+\left(\bar{S}_{z}^{i_{g}}-\bar{S}_{1}^{i g}\right)\right]} \\
& =\frac{1}{M_{\text {ethel }}}\left[\bar{R}\left\{\left(\frac{\bar{S}-\bar{S}^{i q}}{\bar{R}}\right)_{2}-\left(\frac{\bar{s}-\bar{S}^{i g}}{\bar{R}}\right)_{1}\right\}+\left(\bar{S}_{2}^{i g}-\bar{S}_{1}^{i g}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{S}_{2}^{i g}-\bar{S}_{1}^{i g}=\int_{T_{1}}^{T_{c}} \frac{C_{1}^{i g}}{T} d T-\bar{R} \ln \frac{p_{2}}{p_{1}} \\
& =c_{p}^{i g} \ln \frac{T_{2}}{T_{1}}-\bar{R} \ln \frac{p_{2}}{p_{1}} \\
& =84 \frac{\mathrm{kt}}{\mathrm{kmol} \cdot \mathrm{k}} \ln \frac{380}{320}-8.314 \frac{\mathrm{kt}}{\text { knol-k }} \ln \frac{100}{20} \\
& =1.055 \mathrm{kt} \\
& \frac{\dot{\sigma}_{a v}}{\dot{m}_{m}}=\frac{+74 \frac{\mathrm{hg}}{\mathrm{~kg}}}{350 \mathrm{u}}+\frac{1}{28.05 \frac{\mathrm{~kg}}{\mathrm{kmd}}}\left[8,314 \frac{\mathrm{~kg}}{\mathrm{kmol} \cdot \mathrm{k}} \cdot\{-0.75+0.25\}+1.055 \frac{\mathrm{~kg}}{\mathrm{kmol}-\mathrm{k}}\right] \\
& \frac{\dot{G i v}}{\dot{\sin }}=0.101 \frac{\mathrm{kf}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{p \bar{V}}{\bar{R} T}=1+B(T) \frac{1}{\bar{V}} \Leftrightarrow \bar{V}^{2}-\frac{R T}{\bar{p}} \bar{v}-B(T) \frac{R T}{P}=0 \\
& \Rightarrow \bar{v}=\frac{1}{2}\left[+\frac{\bar{R} T}{p}+\sqrt{\left(\frac{\bar{R} T}{p}\right)^{2}+4 B \cdot\left(\frac{\bar{R} T}{p}\right)}\right] \\
& \text { met }\left(\frac{\bar{R} T_{1}}{p}\right)=\frac{8.314 \cdot 320 \frac{\mathrm{t}}{\mathrm{moc}}}{20 \cdot 10^{5} \frac{\mathrm{~d}}{\mathrm{~m}^{3}}}=1330 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \Rightarrow \bar{v}=1197 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

d) $\left(\bar{h}-\bar{L}^{i g}\right)_{u}=\bar{R} T(z-1)+\int_{\infty}^{\bar{v}}\left[T\left(\frac{\partial p}{\partial T}\right)_{\bar{v}}-p\right] d \bar{v}$
met virial vergel. $z=\frac{p \bar{v}}{R T}=1+B(T)^{\frac{1}{v}} \Rightarrow p=R T \frac{1}{\bar{V}}+B(T) \cdot R T \frac{1}{\bar{v}^{2}}$

$$
\begin{aligned}
& \left(\frac{\partial p}{\partial T}\right)_{\bar{v}}=\bar{R} \frac{1}{\bar{v}}+\left\{\frac{d B}{d T} \cdot \bar{R} T \frac{1}{\bar{v}^{2}}+\bar{B}(T) \cdot \bar{R} \frac{1}{\bar{v}^{2}}\right\} \\
& T\left(\frac{\partial p}{\partial T}\right)_{\nu}=\underbrace{R T \frac{1}{v}+B(T) \cdot R T \frac{1}{\bar{v}^{2}}}_{=p}+\bar{R} T^{2} \frac{1}{v^{2}} \cdot \frac{d B}{d T} \\
& \Rightarrow\left(\bar{h}-\bar{h}^{i g}\right)=\bar{R} T B(T) \frac{1}{\bar{v}}+\int_{\infty}^{\bar{v}}\left(\bar{R} T^{2} \frac{1}{\bar{v}^{2}} \frac{d B}{d T}\right) d \bar{v} \\
& =\bar{R} T^{2} \frac{d B}{d T} \int_{\infty}^{\bar{v}} \frac{1}{\bar{v}^{2}} d \bar{v}=-\bar{R} T^{2} \frac{1}{\bar{v}} \frac{d B}{d T} \\
& \left(\bar{h}-\bar{h}^{\prime g}\right)=\bar{R} T \frac{1}{\bar{v}}\left[B(T)-T\left(\frac{d B}{d T}\right)\right] \\
& =\left[-\frac{1}{v}\right]_{\infty}^{v}=-\frac{1}{v}+0
\end{aligned}
$$

e) $\frac{d B}{d T}=-\frac{111+120}{330-320} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol} \cdot \mathrm{k}}=0.9 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol} \cdot \mathrm{k}} \quad(\mathrm{at} 320 \mathrm{~K})$

$$
\begin{aligned}
\left(\bar{h}-\bar{h}^{i g}\right)_{1} & =8.314 \cdot 320 \frac{\mathrm{kf}}{\mathrm{kmol}} \cdot \frac{1}{1197 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}}\left[-120 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}-320 \mathrm{~K} \cdot 0.9 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol} \cdot \mathrm{k}}\right] \\
& =-907 \frac{\mathrm{kf}}{\mathrm{kmol}}
\end{aligned}
$$

