CT3300 – Use of Underground Space Basement Structures

Delft University of Technology/Lectures CT3300 dr.ir. Wout Broere

Chair of Underground Space Technology

Delft University of Technology

Basement Structures

- What are basement structures?
- Possibities for utilisation
- Motives for building underground
- Safety aspects
- Construction techniques
- Cost factors

ŤUDelft

Basement Structures

Present Situation in Underground Construction

In the Netherlands underground construction is interesting because of the following reasons:

- Energy savings
- Protection / for safety reasons
- Integration in environment / landscape
- Mixed use of land
- Cultural heritage conservation
- Limitation of hindrance

Primary Function Types

- Residential
 - Climate
 - Safety
- Business
 - Offices
 - Shops
 - Industrial facilities
- Recreation
 - Sports
 - Musea
 - Education
 - Religion
 - Theaters
- Storage
 - Water
 - Gas
 - Hazardous waste

- Transportation
 - Railway
 - Metro
 - Cars
 - Parking
 - Goods
- Pipelines & Utilities
 - Transport
 - Waste water / sewage
 - Water
 - Gas
 - Cables

Driving factors for underground building construction:

- Growing quality awareness
- Growing pressure on available (urban) space
- Growing mobility
- Large economic growth / prosperity
- Technological progress
- Active government / political pressure / side effect of policy
- Environment

Residential

- Climate
- Shelter

Capadocia, Turkey

Montreal

Lecture CT3300: Basement structures 13

La ville inténieure, au cœurdu centre-ville

Montreal

Undergraded Metalation. A matter of along and making that internant at the fragment of large-spaced throughout the Soundham sound

Mass Transit Arnhem Central Station

- Multi modal public transport transit point
- Shopping, offices, residential functions

Arnhem Centraal Station

Arnhem Centraal: Parking

A CHARLE

Sectie Ondergronds Bouwen, TU Del

新

V

ctie Ondergronds Bouwen, TU Delft

S

Amsterdam: Mechanized parking

Turne -Liba MER A ------Page .. Parkeergarage Laakhaven, Den Haag

nieuwe situatie

Amsterdam: North-South Line

Amsterdam: North-South Line - Vijzelgracht

Lissabon

Sectie Ondergronds Bouwen, TU Delft

Lyon

Sortie

Sporthall Berlin

Sectie Ondergronds Bouwen, TU Delft

Spa, Vals, Schweiss

Van Gogh Museum, Amsterdam

COMPLETE

F

1

4441

8 8

I

Underground Storage

Hong Kong

Lecture CT3300: Basement structures 37

Function Changes

Sectie Ondergronds Bouwen, TU Delft

Lecture CT3300: Basement structures 38

Utrecht

Possible Functions of Buildings under the Ground

Most advantages of underground buildings are independent of the functions of these buildings and do not depend on the functions above

Some advantages are tangible:

- Limited daylight illumination
- Good sound insulation
- Easier security possibilities
- Good warmth / cold insulation

Advantages of underground constructions for different utilization functions

BUILDING TYPES			BENEFITS		
MAJOR REQUIREMENT IN MOST OR ALL CASES ONLY APPLIES IN SOME CASES OR TO A MODERATE DEGREE NO REQUIREMENT		REDUCED VISIBILITY	ACOUSTIC ISOLATION	SECURITY	PRECISE CLIMATE CONTROL
COMMERCIAL:	OFFICE STORE, RESTAURANT				
EDUCATIONAL:	CLASSROOM LABORATORY LIBRARY				
EXHIBITION:	MUSEUM				
ENTERTAINMENT:	THEATER AUDITORIUM SPORTS STADIUM				
RECREATIONAL:	SWIMMING POOL GYM. TENNIS COURTS				
RELIGIOUS:	CHURCH				
MEDICAL	HOSPITAL ROOM EXAM, OPERATING ROOM				
CORRECTIONAL:	PRISON				
INDUSTRIAL:	MANUFACTURING				
STORAGE:	WAREHOUSE COLD STORAGE ARCHIVES PARKING GARAGE				
SYSTEMS:	MASS TRANSIT UTILITIES SERVICE				

Depth Dependency of Functions

	FUNCTION	1st layer	2nd layer	more layers
1	Offices	*		
2	Restaurant	*	*	
3	Laboratory	*	*	*
4	Library	*	*	*
5	Theater	*	*	*
6	Sports accomodation	*	*	*
7	Swimming pool	*	*	*
8	Church	*		
9	Surgery room	*	*	*
10	Prison	*	*	*
11	Factory	*	*	*
12	Warehouse	*	*	*
13	Cold storage	*	*	*
14	Archives	*	*	*
15	Parking garage	*	*	*
16	Installation room	*	*	*
17	Department store	*	*	*

ructures 43

Mind Map

Physical Aspects of Underground Constructions

ent structures 45

Legal Aspects

46

Safety aspects

- Sense of security
- Fire safety
- Security against trespassers
- Subdivision
- Connections between different storeys
- Exits and escape routes
- Social safety

Difficulties with Orientation in Underground

Where are the trains ?

Sense of insecurity and lack of orientation by a space with obstacles, unclear routing, artificial light.

Pleasant safe space by a clear routing, lots of open spaces, natural daylight entry and the use of bright materials

Application of natural daylight and artificial light

Clear lines of sight

Daylight, lack of sharp contrast

Daegu Subway February 18, 2003

Safety measure: direction by light

SP 1)))	SP 2)))	SP 3)))	Δ.
Ż	2	Ż	
非常口			

Safety measure: direction by sound

Design process

Design of underground structures is an iterative process. The following plays a role in the design process:

- design criteria for the basement itself;
- buildings on top of the construction;
- soil profile;
- environment.

Design of Basement Structures Classical Way

DESIGN CRITERIA BASEMENT	
Internal height Total floor area	DESIGN
Day light entry Inside climate Vertical transport	Dimension Floor height Structure
	Installations Depth
SUPERSTRUCTURE	
Dimension Weight Structure	
SOIL CONDITIONS	
Settlement behavior Bearing layer Pollution Layer structure Groundwater situation	CONSTRUCTION Foundation structure Earth retaining structure
ENVIRONMENT	
Near buildings Infrastructure	REALISATION METHOD
Available construction site	COSTS
	Land price (€/m2) Constructional costs

Design of Basement Structures

Iterative Process

Underground Construction

Ground pressure

Water pressure

Open building pit with drainage in Amsterdam (polder principle)

Underwater concrete with tension piles

Water pressure

Composite

wall

Open building pit in Utrecht

Sand

No sealing layers

profile Rotterdam

Legend

Clay Peat

Sand

Second clay layer is deep for a diaphragm wall

Building pit with underwater concrete

Building pit with sheet pile wall and horizontal injection

Diaphragm wall

Prefab diaphragm wall

Permanent sheet pile wall

Permanent sheet pile wall with horizontal

Diaphragm wall and horizontal injection

Prefab diaphragm wall and horizontal injection

Basement structures built with the traditional polder principle

ŤUDelft

Cut and Cover (Top-Down) Construction Phases

Building from ground level:

A constructing diaphragm walls B excavating and building roof structure Building below the roof.

C excavating and building floor -1

D excavating and building floor -2

E excavating and building floor -3

Cut and Cover (Top-Down) Method

- First the roof of the building pit is constructed together with the walls, to continue the activities on the surface
- When a building pit over a long time period is not possible
- Difficult logistics

Lecture CT3300: Basement structures 71

Minimal hindrance for the traffic with the use of the cut and cover method

Excavating process with the cut and cover (top-down) method ndergronds Bouwen, TU Delft

0
Pneumatic Caisson Method

2722727

cutting edges and constructing floor

SYNY

constructing walls and floor

constructing walls, columns and cellar roof

settling + pumping up of the sand-water mixture

after pouring concrete into the working chamber, the construction is finished

3300: Basement structures 73

Pneumatic Caisson

- Construction above/on the ground level
- Excavation underneath the construction (control of groundwater by air pressure)
- Limited depth because of working under pressure
- No dewatering necessary
- Hindrance because construction on street level
- Bearing capacity of foundation layer must be good

Construction of a caisson

TUDelft

76

Vertical Building Pit Boundaries

Slopes

- dewatering necessary
- large space necessary

Steel sheet pile wall or combi-walls

- many different combinations and strengths
- easy, fast building
- limited lengths of elements
- hindrance caused by vibrations and noise
- wall is relatively weak -> danger of settlements
- wall elements can possibly be reused

Drainage of a building pit with suction pipes or pressure pipes

A lot of struts can be used to keep the building pit stable (note the jack)

A combination-wall (combi wall) is stronger than a sheet pile wall

Mostly sheet piles shorter than tubular piles

Diaphragm walls/bored piles wall

Wall, which is formed in the ground by removing the soil and replacing it by slurry (bentonite-clay). After placing of a reinforcement cage, the slurry is in turn replaced by concrete.

- Can be part of final construction
- Stiff wall
- Can be used for cut-and-cover (top-down) method
- Long construction time and expensive
- In the Netherlands max. depth 50 m; in other areas depths up to 100 m possible

 b) During the excavation a bentonite suspension is pumped into the hole, which stabilises the hole and makes it watertight

a) Installation of the guide walls, which will provide an obstacle free vertical excavation of the diaphragm wall

c) After the excavation of the hole, the reinforcement cage is let down by a crane in one section (length 2,5 - 6,0 m) of the diaphragm wall

Realization of a diaphragm wall

Lecture CT3300: Basement structures 85

Grab of an diaphragm wall excavating machine

Diaphragm wall at 25 meter minus (connection screw housing and starter bars)

MIP (mixed in place) machine (wet and dry method)

Mixed in place, strengthened by steel profiles

Auger pile wall (no slurry)

- No slurry used
- Stiff construction, less settlements and less damage on marginal property
- Bearing capacity for superstructure
- Suitable for cut-and-cover method
- Extended construction period

In case of water-retaining function, be carefull!!!!!!

at an excavation

Different types of bored pile walls (no slurry)

Building pit with auger pile wall

Berliner Wall (Berliner Verbau)

- Vertical steel profiles with wooden beams or shelves
- No water retaining capability
- Low retaining height

Berliner wall (where possible very economical)

Walls by Chemical Injection

- Existing soil is mixed in place with chemicals
- Method especially suitable for securing stability of marginal properties
- Possibility to make retaining wall underneath marginal structure in case of lack of space
- Also water retaining
- Only suitable in "sandy" material
- Not possible in case of strong groundwater flows

Range of use of chemical injection in soil:

- 1 = Limit for cement injection
- 2 = Limit for the use of the Joosten method
- 3 = Limit for the use of the Monodur method
- a = Cube compression strength 4,8 N/mm2
- b = Cube compression strength 3,5 N/mm2

nt structures 96

Jet Grouting Wall (VHP)

- Wall made with jet grout columns
- Very High Pressure (VHP) grouting
- Suitable as a ground and water retaining structure and as a reinforcement for major structures
- For almost all soil conditions
- Temporary and final construction
- Relative new technique in the Netherlands

Jetting

A high speed water and air jet is forced out of the upper nozzle and at the same time cement slurry is jetted from the lower nozzle in the opposite direction to supplement the water-air jet function with the formation of a grouted mass and to balance the pressure inside the monitor.

98

ires

Jet grouting (VHP) technique and realization

Carving cannot be made only by applying high pressure to the water. The water to be injected must be surrounded by an air jet. From the Fig.1 it can be seen that the carving ability of water has been remarkably improved by combined use of an air jet.

Another feature is that a jet air pushes the carved soil up onto the surface.

Therefore, the soil is replaced with grouting solution in the most favorable manner.

Fig.1 Relationship between water jet's axial flow pressure and its distance from the nozzle.

The effect of the combined use of an air jet and a water jet

Result of jet grouting: a column and a wall

Boring

Soil erosion

Soil erosion and grout injection

Connection of several Jet grouting columns

Support

- Support of structures in danger of settlement (f.i. old churches)
- Support of existing structures to increase bearing force during renovation
- Support for constructing cellars under existing structures
- Support of buildings near a building pit in narrow spaces

Sanitation

 Stabilising all types of foundations

Sealing

- Bottom sealing of building pits
- Sealing walls of building pits
- Sealing walls for controlling ground water
- Closure of connected sheet piles
- Closure of gaps in bored pile walls

New estate

 Realization of foundations in difficult narrow places

Tunnelling

- Construction of underground arches
- Construction of arches from surface
- Prevention of settlement of nearby buildings

Different applications of jet grouting (VHP) techniques

103

Delft

Stage 1. Excavate and support top centre gallery for entire tunnel length. Stage 2. Alternately excavate and support top lateral headings, 2-3m at a time.

Stage 3. Remove upper temporary vertical support columns.

Stage 4. Excavate lower centre heading, 2-3m in advance of excavation of lower lateral headings.

Simultaneously install lower vertical support columns.

Stage 5. Excavate lower arched invert.

Two stage ground treatment stabilised the ground

Stabilizing the ground through application of Jet grouting (VHP)

Examples of application of jet grouting (vhp) (1)

Examples of application of grouting

Lecture CT3300: Basement structures 106

Method of constructing tunnels through horizontal Jetgrouting

Soil Freezing

- Wall construction by means of freezing of moisture and water in the soil
- Water and earth retaining structure
- Relatively independent of soil type and conditions
- Environmentally safe
- Deformations because of freezing and thawing (swell)
- Only temporary constructions
- Not suitable in (strong) groundwater flows

Freezing pipe

Placing of the freezing pipes in the ground

The construction of a freezing wall

Lecture CT3300: Basement structures 108

- a) Construction of freezing walls into impermeable layer
- b) Sealing of the building pit bottom by a chemical injected layer
- c) Construction of a watertight building pit with underwater concrete

Horizontal Boundaries

- Polder
- Open building pit with dewatering
- Natural impermeable layer
- Underwater concrete
- Horizontal chemical injection
- Jet grouting (VHP)

Basement structures built with the traditional polder principle

ŤUDelft

Pouring concrete under water with a funnel

Pouring underwater concrete

Underwater and Structural Concrete

Cut and Cover: Combining construction techniques

structures 115

Capable of building a large space having a diameter of 50m in underground at a great depth.

Underground constructions: Geo dome construction

Underground constructions: Underground theatre

Model of a dome (Japan)

Construction Failures

- Designing on strength
- Designing on (water)pressure
- Failures:
 - Wilhelmina station (high pressure grouting)
 - Botlek utility tunnel (starting zone constructed with weak concrete and after that freezing techniques have been used)
 - The Hague Metroline (high pressure grouting)

Scaligraphy taken from NLC Plaxes Model

FLL
Stanne (F)
Uppe Marke Day (MC-U)
Flood Day (F)
Flood Day (F)
Uppe Marke Day (MC-U)

Nicoll Highway, Singapore

TUDelft

Temporary structures

Temporary structures will be replaced by permanent structures. Design required for both stages.

Standards, specifications and boundary conditions are not always the same for temporary works and permanent construction and a transition period between the two exists

Multi-criteria Matrix Method

- Selection based on experience of the designer
- Assisted by the multi criteria method in case of more difficult problems with more variables

Combination of building pit borders	of building pit borders HORIZONTAL					Remarks on vertical	
	A No closing	B Natural	Art	building pit border			
	layer with dewatering (temporary)	closing layer (temporary/ definite)	C Underwater concrete	D Chemical injection (temporary)	E Jetgrouting (temporary/ definite)		
1 Slopes	1A	Х	Х	Х	Х		
2 Sheet pile - / Combined wall	2A	2B	2C	2D	2E		
3 Diaphragm - / Bored pile wall	3A	3B	3C	3D	3E		
4 Screwed pile wall (without slurry)	4A	4B	4C	4D	4E		
5 Chemical injected wall	5A	5B *	5C *	5D *	5E *	stabilising and/or watertight	
6 Berliner wall	6A	Х	Х	6D *	6E *	depends on soil type. Not watertight	
7 Jetgrouting	7A	7B	7C *	Х	7E *	stabilising and/or watertight	
8 Freezing wall							
9 Pneumatic caisson	9					horizontal/ vertical border	
Remarks concerning horizontal building pit border		Definite closing layer = polder principle		Depends on soil type, injectiability		* : Special or local applicationX : Not or hardly applicated	

	CRITERIA								
Combination	Construction depth			Disruption ground	Hindrance neighbours	Nearby buildings	Disruption infra. above	Small working	Environ- ment
	> 20 m	5-20 m	< 5 m	water level			ground level	ground	
1A Slope/ Dewatering	1	1	5	1	5	1	1	1	5
2A Sheet pile wall/ dewatering	1	3	5	1	2	1	3	4	4
2B Sheet pile wall/ closing layer	2	5	5	5	2	2	3	4	4
2C Sheet pile wall/ underwater concrete	2	3	3	5	2	2	3	3	4
2D Sheet pile wall/ chemical injection	1	2	2	5	2	2	3	4	1
2E Sheet pile wall/ Jetgrouting	1	2	2	5	2	2	3	4	3
3A Diaphragm wall/ dewatering	1	2	2	1	4	3	5	2	3
3B Diaphragm wall/ closing layer	5	4	2	5	4	5	5	2	3
3C Diaphragm wall/ underwater concrete	5	2	1	5	4	5	3	2	3
3D Diaphragm wall/ chemical injection	1	2	1	5	4	5	3	2	1
3E Diaphragm wall/ Jetgrouting	1	2	2	5	3	3	3	2	3
4A Screwed pile wall/ dewatering	1	2	2	1	4	3	5	2	3
4B Screwed pile wall/ closing layer	1	4	2	5	4	5	5	2	3
4C Screwed pile wall/ underwater conc.	1	2	1	5	4	5	3	2	3
4D Screwed pile wall/ chemical injection	1	2	1	5	4	5	3	2	1
4E Screwed pile wall/ Jetgrouting	1	2	2	5	3	3	3	3	3
5A Chemical injection/ dewatering	1	1	1	1	5	5	1	4	1
6A Berliner wall/ dewatering	1	1	4	1	3	1	1	3	4
7A Jetgrouting/ dewatering	1	1	1	1	4	2	3	3	3
7B Jetgrouting/ closing layer	1	1	1	5	4	3	3	3	3
9 Caisson (pneumatic)	2	3	1	5	1	5	2	5	5
	Complex realization				Sound/ visual	Vibration/ Deformation	Diff. with cut- and-cover method		

					Total time rough			
				Foundation				
AA1	2	Sheet pile wall		10	10	20	7	
		Screwed pile wall		21	8	29	10	
		Sheet pile wall	Underwater concrete	22	9	31	11	
AA3	3	Sheet pile wall		24	12	36	13	
BA 3	3	Screwed pile wall		31,5	12	43,5	16	
		Sheet pile wall	Polder principle	17,5	12	29,5	11	
BA4	3	Screwed pile wall	Polder principle	32	12	44	16	
		Sheet pile wall	Underwater concrete	26,5	13	39,5	14	
BA5	3	Screwed pile wall	Underwater concrete	34	13	47	17	
		Sheet pile wall	Piles to -50 m	42,5	20	62,5	23	
BA6	5	Diaphragm wall	Piles to -50 m	54	20	74	27	
		Sheet pile wall	Polder principle	25	20	45	16	
BA7	5	Diaphragm wall	Polder principle	34,5	20	54,5	20	
		Sheet pile wall	Floating foundation	20,5	20	40,5	15	
BA8	5	Diaphragm wall	Floating foundation	30	20	50	18	
		Caisson		-	-	48	17	
		Diaphragm wall	Piles to -50 m	67	28	95	34	
		Diaphragm wall	Floating foundation	35	28	63	23	
		Caisson		-	-	63	23	
CA3	10	Caisson		-	-	87	32	
		Sheet pile wall	Underwater concrete	21,5	9	30,5	11	
		Sheet pile wall	Chemical injection	22	15	37	13	
BU2	3	Diaphragm wall	Chemical injection	29,5	15	44,5	16	
		Sheet pile wall	Underwater concrete	33,5	13	46,5	17	
	5	Diaphragm wall	Chemical injection	50	23	73	26	
BU5	5	Diaphragm wall	Floating foundation	36	2Bectur	e CT3 59 0: Bas	ement str2dtures 1	

Case	Location	Model	Remarks	Layers	Proportion	Accuracy		
number				•		-		
AA1	Amsterdam	Sheet pile wall		2	125	10		
AA2	Amsterdam	Sheet pile wall	Underwater concrete	2	148	10		
AA3	Amsterdam	Sheet pile wall		3	117	10		
AA4	Amsterdam	Sheet pile wall	Polder principle	3	114	10		
AA5	Amsterdam	Sheet pile wall	Underwater concrete	3	135	10		
AA3/6	Amsterdam	Sheet pile wall		4	120	15		
AA6	Amsterdam	Sheet pile wall		5	131	20		
AA7	Amsterdam	Sheet pile wall	Polder principle	5	100	20		
AA8	Amsterdam	Sheet pile wall	Floating foundation	5	110	20		
AU1	Utrecht	Sheet pile wall	Underwater concrete	2	144	10		
AU2	Utrecht	Sheet pile wall	Chemical injection	3	149	10		
AU3	Utrecht	Sheet pile wall	Underwater concrete	3	137	10		
BA1	Amsterdam	Screwed pile wall		2	164	10		
BA3	Amsterdam	Screwed pile wall		3	177	10		
BA4	Amsterdam	Screwed pile wall	Polder principle	3	156	10		
BA5	Amsterdam	Screwed pile wall	Underwater concrete	3	168	10		
BA6	Amsterdam	Diaphragm wall		5	186	20		
BA7	Amsterdam	Diaphragm wall	Polder principle	5	145	20		
BA8	Amsterdam	Diaphragm wall	Floating foundation	5	149	20		
BA9	Amsterdam	Diaphragm wall		7	187	25		
BA10	Amsterdam	Diaphragm wall	Floating foundation	7	153	25		
BU2	Utrecht	Diaphragm wall	Chemical injection	3	214	10		
BU4	Utrecht	Diaphragm wall	Chemical injection	5	198	20		
BU5	Utrecht	Diaphragm wall	Floating foundation,	5	195	20		
			chemical injection		210			
RO \	Utrecht	Diaphragm wall	Cnemical injection	/	210	25		
CA1	Amsterdam	Caisson		5	198	10		
CA2	Amsterdam	Caisson		7	208	10		
CA3	Amsterdam	Caisson		10	218	10	nt structures	134

Proportion of costs with construction of deep basement structures in Utrecht KIVI "Op naar de diepte" 1994

Lecture CT3300: Basement structures 135

Number of basement floors

Proportion of costs with construction of deep basement structures in Amsterdam

KIVI "Op naar de diepte" 1994

TUDelft

More effective use of space by underground building (Hanusch en van Dongen 1998)