CT3300 – Use of Underground Space Lecture 2: The Subsoil

Delft University of Technology/Lectures CT3300

dr.ir. Wout Broere

Delft University of Technology

Overview

- Also see the reader *Underground Space Technology*
- Focus on:
 - Heterogeneous build-up of the underground: origin, structure and quality
 - Variation in groundwater levels, pore pressures, quality of the groundwater; in time, place and special circumstances
 - Deformation of underground structures depending on: applied construction techniques, external influences and actual status
 - Risk: settlements
 - Sustainability, ecology

Geological Periods

Outline of geological periods									
Eon	Era	period	Age	Start (in mln years)					
		Oversteinen	Holocene - Alluvium	Holocene - Alluvium					
		Quartenary	Pleistocene - Dilivium	Pleistocene - Dilivium					
				Pliocene	-7				
	Cainozonic		Above (Neogene)	Miocene	-26				
		Tertian		Oligocene	-37				
				Eocene	-53				
			Under (Palaeogene)	Palaeocene	-65				
		Crotacoous	Above						
		Cretaceous	Under	-136					
	Mesozonic		Malm						
		Jurassic	Dogger						
Fanerozoic			Lias		-195				
		Triassic	Keuper	Keuper					
			Muschellime						
			(colourful) sandstone	(colourful) sandstone					
		Permian	Zechtstein						
		Ferman	Rotliegendes	-280					
		Carbinoferious	Above						
	Dalaazania	Carbinorenous	Under	-345					
	PaleOZOHIC	Devonian			-395				
		Silurian			-435				
		Ordovician			-500				
		Cambrian (since the C	sils)	-570					
	Proterozonic	Further classified on the ba	ohases						
Azoic cryptozoic =	Archeozonic	(Oldest remains of algae a	ars)						
Precambrian	(Archeic)	oldest dated rock	-3500						
	No information known: On the exis								
	and meteorites the age of the car		-4500						
and meteorites the ade of the earth crest can be determined on									

In The Netherlands (as in most delta's) Holocene era most important

Depth of Pleistocene

Thickness of the Holocene - or depth of the Pleistocene layers in the Netherlands in m. beneath NAP

Lectures CT3300: The Subsoil 4

Top sand layer

Formation Era

Obtrusive land ice (Saalien)

- A. Drenthe
- B. Amersfoort phases
- C. Glacial deposits

Lectures CT3300: The Subsoil

6

Geology of the Netherlands

West

Lectures CT3300: The Subsoil

7

East

Geology of the Netherlands

Functions of the Underground

- Natural functions
 - Flora
 - Fauna
 - Groundwater (storage, cleaning)
- Artificial functions
 - Infrastructure
 - Buildings/constructions
 - Groundwater mining
 - Supply of raw materials
 - Storage of contaminants
 - Heat cold storage and supply

Underground Space is not unlimited

Soil Profile from a Boring

 Undisturbed samples

 Lectures CT3300: The Subsoil
 10

Photograph of sampled soil profile, together with the results of an adjacent Piezo Cone Penetration Test (CPTU)

(Dutch) Cone Penetrometer Test (CPT)

CPT and Borehole *River profile*

13

300: The Subsoil

Profile Amsterdam and Rotterdam

Toplayers above 12m-NAP are holocene (sand, peat, clay) and (semi-) impermeable

Profile Amsterdam

- The presence of bad bearing and non permeable layers above 12-NAP m are significant for this profile. These layers originate from the Holocene.
- Eem clay not everywhere

Profile Rotterdam

- Clay above 12m-NAP not very good
- Leaks

Profile The Hague and Utrecht

Soil Profile

SAND

CLAY

SILT

PEAT

- Soil profile together with the results of the Piezo Cone Penetration Test (CPTU)
- Note: Excess pore pressure in the clay layers

Water Table

Water table close to soil surface

Fresh and salt water under The Netherlands

- Effect of dunes and Veluwe
- Deeper layers consist of salty water or rocks

• Salty groundwater in Achterhoek

(De Ondergrond van Nederland TNO/NITG)

Groundwater

Phreatic Level of Groundwater

22

Permeability

$Q = k i A t [m^3]$						
k = permeability	coefficient [m/s]					
Dune sand:	<i>k</i> ≈ 10 ⁻⁴ m/s	\leftrightarrow	Peat:	<i>k</i> ≈ 10 ⁻⁸ m/s		
			Clay:	<i>k</i> ≈ 10 ⁻¹⁰ m/s		
Type of soil		<u>k in m/s</u>				
Gravel			10-2			
Coarse sand		10 ⁻² - 10 ⁻	³ Influence on risk of			
Moderate coarse – I	moderate fine sand	10 ⁻³ - 10 ⁻⁴	₄ leakage			
Fine sand		10 ⁻⁴ - 10 ⁻⁵				
Clayey sand		10 ⁻⁵ - 10 ⁻⁶				
Sandy clay		10 ⁻⁶ - 10 ⁻⁹				
Clay			10 ⁻⁹ - 10 ⁻¹	11		
Peat		10 ⁻⁷ - 10 ⁻⁹				

Piezometric Head

Lowering of the ground water level: temporary or permanent

Water Level Drawdown by Gist Brocades

Risk Management

Types of Contract

- Lumpsum
- B of Q
- D and C
- PPC
- etc

Who does what and when

Structures form a barrier: can be cause for earth slides

Impeded flow can cause earth slides

Groundwater discharge by means of drain

Settlement (Consolidation)

- $\frac{\Delta z}{z} = \frac{1}{C} \ln \frac{p_2'}{p_1'}$
- = thickness of compressed layers [m] Z
- $\Delta z =$ size of compression of layer by increasing the load p'1 to p'2 [m]
- p'_1 = initial vertical grain pressure [kN/m2]
- $p'_{2} =$ grain pressure after increasing the load [kN/m2]
- C = compression constant

33

Surface Settlements

Influence of Preconsolidation

The result of a compression test is a bended line. The initial line (small slope) shows the historical stress situation. One can find the maximum load in history (='pre-tension') at the bending point of the line. This is a way to find out what has been the maximum load in history. In this case this is 24 kN/m2. This load can per example be a glacier.

NB: recuperating of settlement after relieving load (e.g. Elbe Tunnel)

 $-\varepsilon$ or -e

The hydronamic period:

- is directly proportional to the square of the layer thickness.
- increases with a factor 4 by a duplicated layer thickness.
- increases with the compressibility of the soil

Sensitivity for Settlement

De Ondergrond van Nederland TNO/NITG)

If the loading of the layers occurs too fast, water overstresses will appear in the soft layer. This results in lower shear stresses. This can be very dangerous! So one should be very carefull. Reliable research of the ground and good advise are necessary.

Foundation Classes

Design categories

Usability limit state design and ultimate limit state design (bearing capacity) Safety factors

Three identically loaded piles with different reactions due to differences in the subsoil

Load settlement behavior of pile tips of driven, auger and bored piles in sand

Change in Cone Penetration Test results from of relaxation in the subsoil caused by pulsing piles close to the foundation of a construction.

Danger of vertical and/or horizontal movement

White House - Rotterdam

Made with mechanical sleeve cone

Comparison of the results of a test load and the calculated bearing capacity

City Surroundings

Influence of Calculation Methods

New Palace Yard Unterground Car Park, London (after Burland)

Influence of Calculation Methods

Mohr-Coulomb Model

$$\tau_f = c + \sigma'_n \tan \varphi$$

c = cohesion

 φ = angle of (internal) friction

Maximum shear stress as a function of cohesion, normal effective stress and the angle of internal friction (Coulomb's rule)

Stress-strain Behaviour

Effective Stress

Total vertical stress, effective vertical stress and water pressure behind a retaining wall Water $\mathcal{W} = \mathcal{Y}_w(h-d)$

Vertical effective stress:

$$\sigma'_{v} = \gamma_{s}h - \gamma_{w}(h - d)$$

Horizontal effective stress:

 $\sigma'_{h} = K\sigma'_{v}$

In calculating horizontal effective stresses, we assume that the water pressure (u) is hydrostatic and universal (equal in vertical and horizontal direction).

Coefficient of Horizontal Stress

K is the horizontal (effective) stress coefficient. When no horizontal deformation is prescribed upon a soil mass, it is said to be in the neutral stress state.

The dependency of the K-coefficient to a prescribed deformation of a soil mass

Ка											
φ =	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40
δ=0	0.59	0.54	0.49	0.45	0.41	0.37	0.33	0.30	0.27	0.24	0.22
+5	0.56	0.51	0.45	0.42	0.38	0.35	0.32	0.29	0.26	0.23	0.21
+ 10	0.53	0.48	0.44	0.40	0.37	0.33	0.30	0.28	0.25	0.22	0.20
+ 15	0.50	0.46	0.42	0.38	0.35	0.32	0.29	0.26	0.24	0.22	0.19
+ 17.5		0.45	0.41	0.38	0.34	0.32	0.29	0.26	0.24	0.21	0.19
+ 20			0.40	0.37	0.34	0.31	0.28	0.25	0.23	0.21	0.19
+ 22.5				0.36	0.33	0.30	0.28	0.25	0.23	0.20	0.18
+ 25					0.32	0.30	0.27	0.25	0.22	0.20	0.18
+ 27.5						0.29	0.26	0.24	0.22	0.20	0.18
+ 30							0.26	0.24	0.21	0.19	0.17
+ 32.5								0.23	0.21	0.19	0.17
+ 35									0.21	0.19	0.17
+ 37.5										0.18	0.16
+ 40											0.16

Кр											
φ =	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40
δ = 0	1.70	1.86	2.04	2.24	2.46	2.72	3.00	3.32	3.69	4.13	4.60
- 5	1.88	2.08	2.29	2.54	2.84	3.13	3.52	3.92	4.38	4.95	5.62
- 10	2.10	2.33	2.59	2.89	3.24	3.64	4.12	4.86	5.26	5.99	6.86
- 15	2.31	2.61	2.93	3.31	3.75	4.25	4.85	5.50	6.44	7.42	8.64
- 17.5		2.77	3.10	3.56	4.04	4.60	5.28	6.58	7.09	8.28	10.28
- 20			3.32	3.82	4.33	4.98	5.75	6.76	7.82	9.29	11.16
- 22.5				4.06	4.64	5.46	6.42	7.41	8.88	10.20	12.85
- 25					5.08	5.98	6.99	8.25	9.88	11.77	15.05
- 27.5						6.48	7.72	9.23	11.26	14.00	17.73
- 30							8.66	10.48	13.25	16.70	21.72
- 32.5								12.65	15.90	20.20	27.00
- 35									18.60	24.60	35.10
- 37.5										31.50	50.80
- 40											70.80

K-values as a function of the angle of internal friction φ and the wall friction δ , for calculating the horizontal effective stress on a vertical wall by horizontal ground level.

$$\begin{array}{rl} = 0 \rightarrow & K_a = \tan^2(45 - \phi/2) \\ & K_p = \tan^2(45 + \phi/2) \end{array}$$

 $K_{\rm a}$ and $K_{\rm p}$ are the coefficients for the horizontal components

Settlements Caused by Installation of Sheet Piles

ŤUDelft

New Developments

- Structures become larger and deeper. More focus on water pressure and leakage.
 - Leakage detection by electrical methods
 - Control and blocking of leakage by classical methods
 - Control and blocking of leakage by micro biological methods

Leakage Detection

Leakage Detection

Question

Is Underground Construction different from constructing above ground?

• If yes: Why and in which respects

Underground Construction

- Planning or construction mistakes difficult to repair
- Mostly under water, effects of water pressure
- Effects on the surroundings even when everything goes as planned
- Variety in construction techniques
- Safety
- No 100% clear picture of the underground especially when tunneling or boring

Case CT3300

- The case must be written by 3 or 4 students
- Subject can be chosen freely
- Information: Library UST at room CT 3.29
- Deadline: Preferable in this or next term
- Oral exam: concerning case study and lectures

Case CT3300

- Underground Shopping Centres
- Hurricane Evacuation Route
- Flood Prevention / Retaining Basins
- A tram or parking below the Mekelweg?
- Underground (Operational) Safety
- Multiple Space Use at Amsterdam CS
- Architecture in Underground Space technology
- Influence of freezing techniques to surroundings
- Pipe line project by using a micro-tunneling method
- Submerged / floating tunnels
- Comparison of application of Underground Construction in different countries
- Safety and risk of and in underground structures
- Heat and cold storage and exchange

Case CT3300

- Underground collection of waste
- The use of HDD and micro tunneling for drainage projects
- Hybrid construction methods
- Comparison of value and cost of Underground Structures
- Archeological aspects of undergound construction
- Zoning of the underground
- Delft Underground Station
- Logistics on major underground civil projects
- HDD and Micro tunneling as prevention for landslides
- Multiple Space Use
- AMFORA

