
Safety and the use of Underground Space

Prof.ir. J.W. Bosch / Ir. C.J. Soons

February 20, 2009

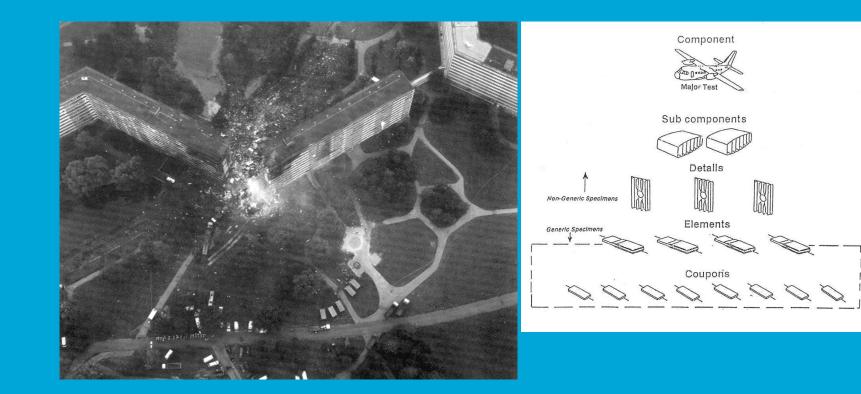
Delft University of Technology

Objective of lecture

- Awareness of safety issues
- Interaction between technique and society
- Relations with the use of Underground Space

Content

- 1. Introduction
- 2. Safety & Risk
- 3. Risk models
- 4. Tunnel Safety in the Netherlands
- 5. Cases:
 - Delft Spoorzone
 - HSLzuid
 - RandstadRail
 - Utrechtse Baan
 - Rotterdam CS


Introduction

Safety in various fields:

- Aviation
- Industries
- Dikes
- Health care
- Food

Aviation

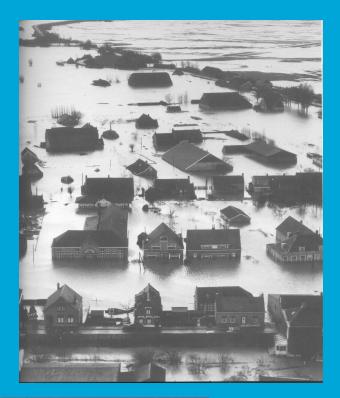
Industries

•External / Internal safety

Fire work disaster Enschede

February 20, 2009

Inundation risk



Unfortunately...

February 20, 2009

Tunnels

- Derailment of Metro in Valencia June 2006
- (app. 37 lethal victims)
- Mont Blanc tunnel
- (1999, flour and margarine 39 lethal victims)
- Channel tunnel (1996)
- Gotthard tunnel

(head-on collision 2 lorries)

Mont Blanc tunnel

Layered use of Space

Transport of Hazardous materials

February 20, 2009

Thinking of safety

- Lots of social attention
- Lack of (legally) specified safety standards
- Various involved stakeholders: attention for process
- Safety is expensive!

Safety does not exist!

Risk = probability of failure * consequences

February 20, 2009

Safety characteristics (1)

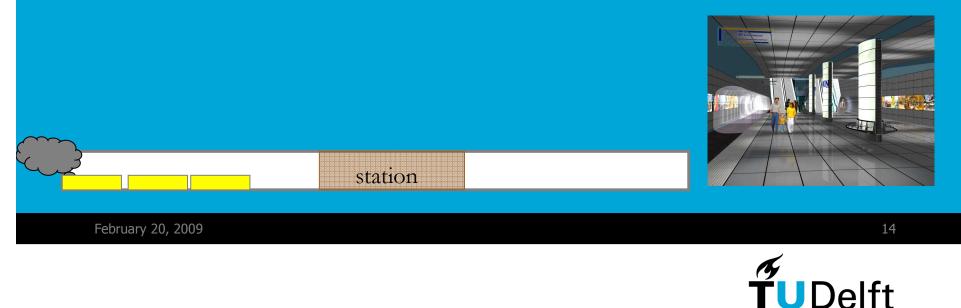
• Risk:

• Probabilistic approach:

Risk = probability of failure * consequence

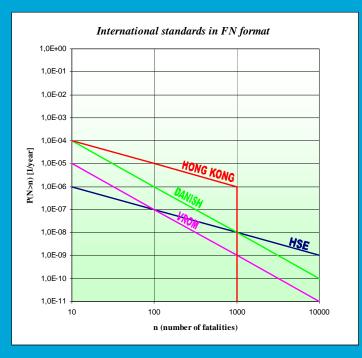
All type of incidents.

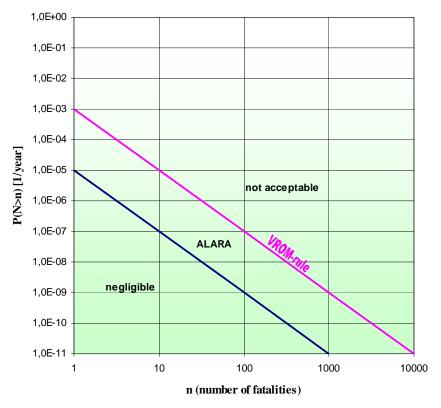
• Deterministic approach (fire brigades) Scenario thinking of several incidents


Safety characteristics (2)

•Integral approach:

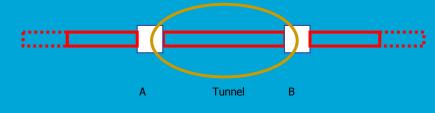
Internal safety


(using airplane, train, working in factory – objective)


- External safety (near industry/rail track objective)
- Social safety (subjective)

Safety characteristics (3)

- Group risk
- Individual risk
- ALARA principle


Societal risk criterion in The Netherlands

February 20, 2009

Internal safety

- Integral approach
- Safety Chain Prevention is better than cure
- Self Rescue Main point on ability to evacuate oneself
- Safe Haven approach
- Normative scenarios for aid and assistance not everyone can be rescued
- Clear responsibility for remaining risks

February 20, 2009

Safety Chain

- **Pro-action** Safety measures in planning stage (pre-construction)
- Prevention Measures and provisions to prevent accidents
- Preparation Preparation and provisions to mitigate accidents
- Repression Actions during accident
- Follow-up Dealing with post-accident situations

Think of detection, extinguish, self rescue measures etc. in all parts of the system.

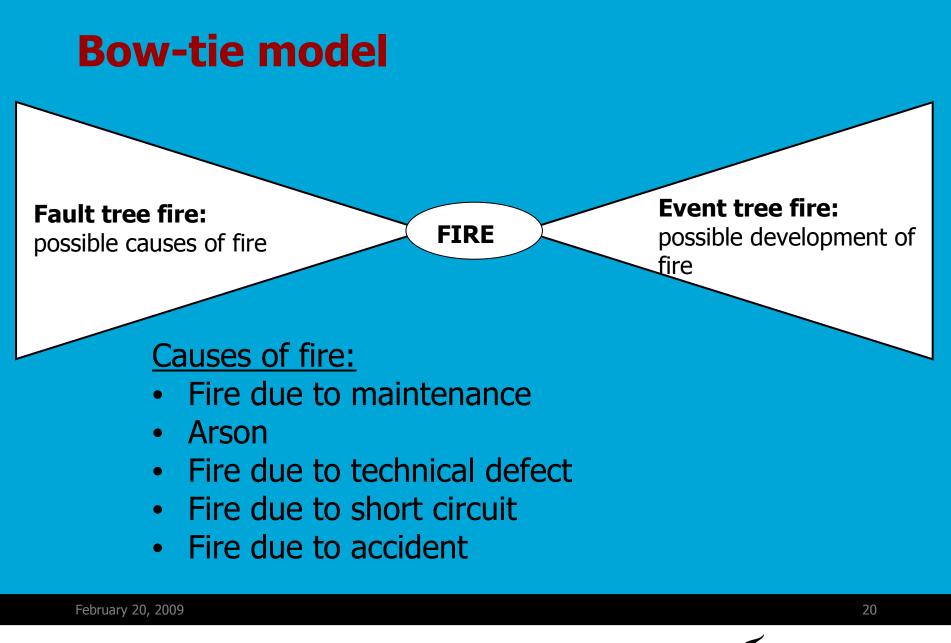
Risk models

Scenario analysis:

Process analysis of one specific incident, incorporating all implemented safety measures, in a story wise manner.

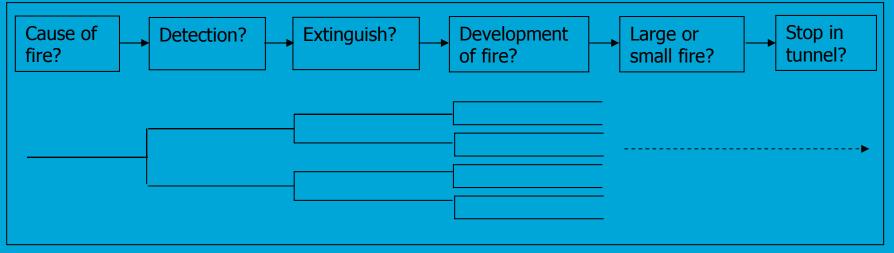
QRA-models

- Failure Mode & Effect Analysis (FMEA)
- Event tree
- Fault tree
- Bayesian method
- Etc.



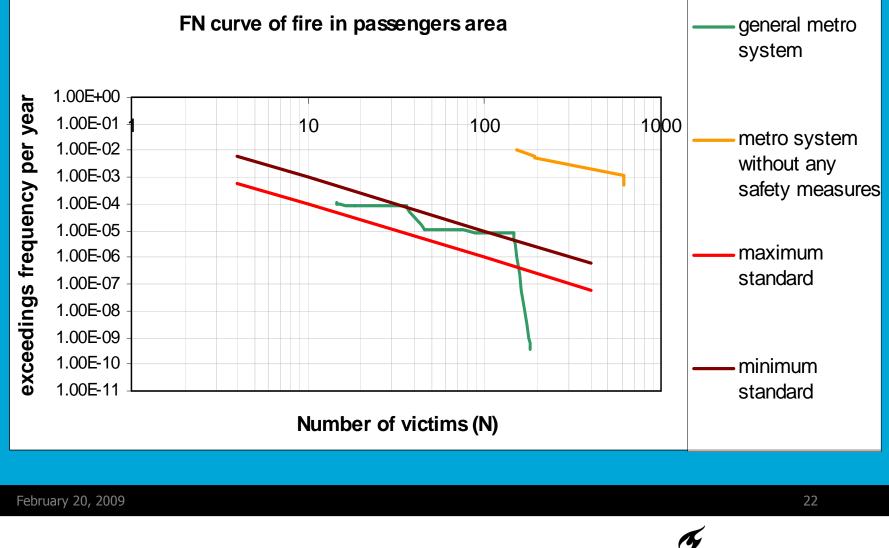
Failure mode	Failure cause	Effect of failure
logistic problems	planning fault	time loss
collapse of concrete element	design fault	costs, time loss, fatalities
fixing concrete elements	element falls	costs, time loss, loss of quality, fatalities
huge deformations of elements	element collapses and falls	costs, time loss, loss of quality, fatalities
no right composition of concrete	production fault	costs, time loss, loss of quality
fire in building	gas leak	costs, time loss, loss of quality, fatalities

February 20, 2009



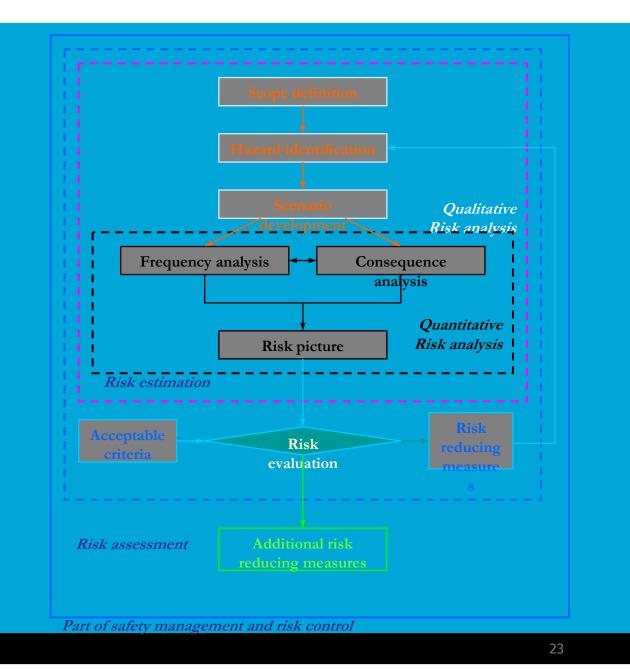
[″]UDelft

Event tree


This represents the possible development of a fire in a metro system

Chance of failure of each step (probability) \Rightarrow Chance stop in tunnel

QRA - Output



TUDelft

This risk approach is used in several working fields:

- Dikes
- Health Care
- Foods

•Traffic (aviation, roads, rail, metro)

Safety in the Netherlands

- Large incidents in tunnels worldwide
- Severe incidents in the Netherlands
 - Enschede (2000)
 - Volendam (2001)

Focus for safety increased!

Safety in tunnels (Netherlands)

Can tunnels be considered "safe"?

- No legislation (EU nor NL until 2007)
- No standard
- No standard risk model

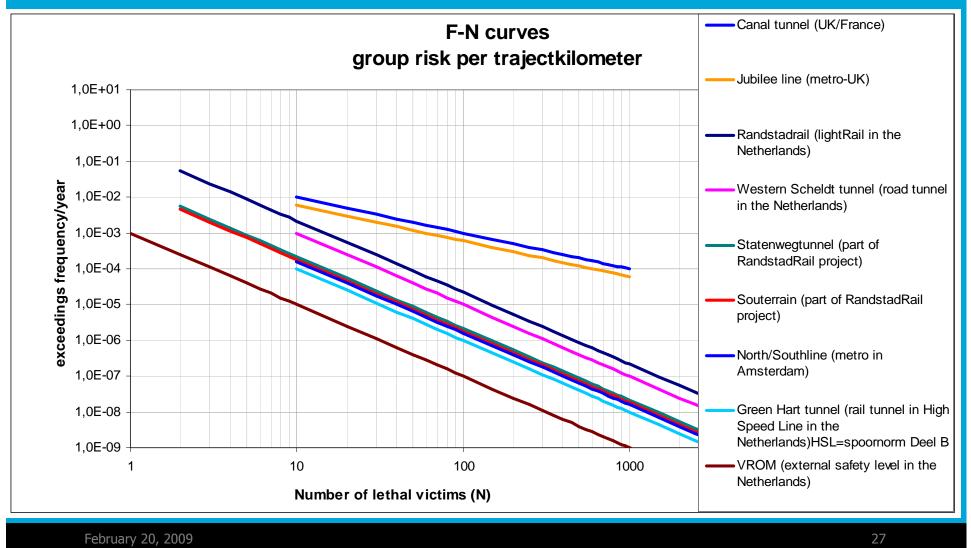
Consequence:

• Different safety levels in similar/comparable projects.

Standard?

Comparing standards used in:

- RandstadRail (metro/LightRail)
 - Statenwegtunnel 🔴
 - Haagse tramtunnel 💻
- North/Southline (metro-A'dam)


To rail and road projects :

- Westerscheldetunnel (WST- road) •
- Green Hart tunnel (HSL- rail) •

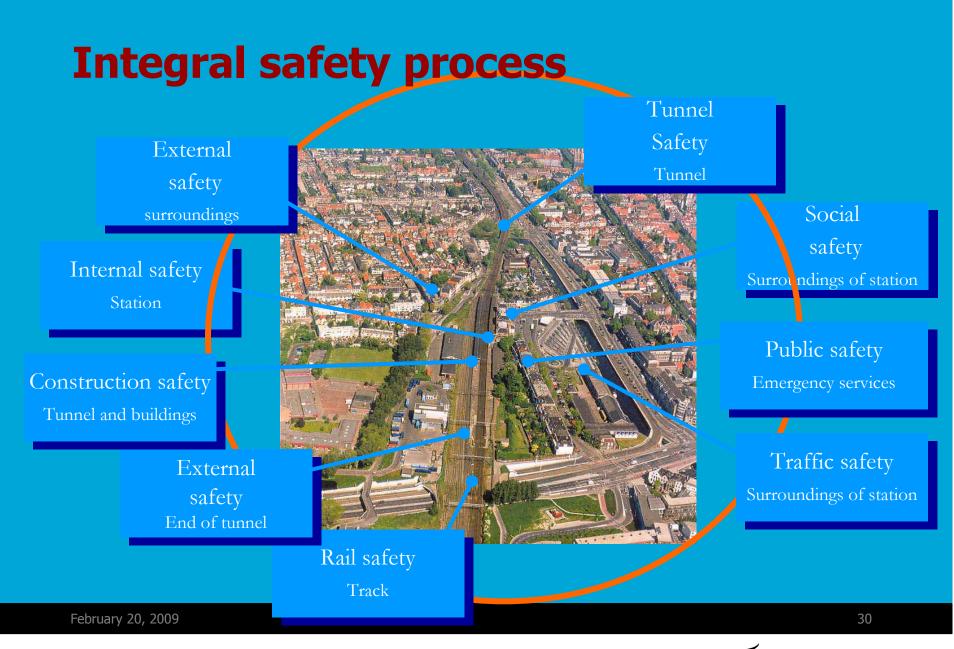
Standard ?

Safety in tunnels - legislation

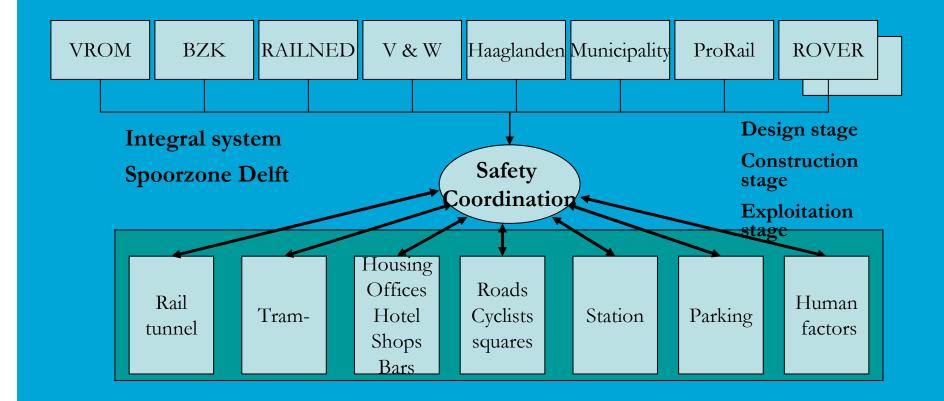
- EU Directives 2004/54/EG
- Implementation in Dutch Legislation + additional safety measures (valid on May 2006)


Additional measures:

- One direction of traffic
- Ventilation and Traffic control centre
- Shorter distance between:
 - emergency posts
 - emergency exits



Case 1: Spoorzone Delft

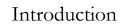


TUDelft

Delft - Integral safety

Safety studies

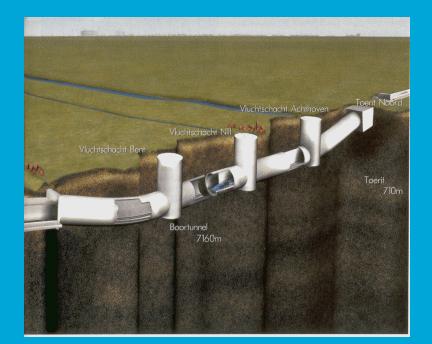
- Safety concept (2001)
- Quickscan Safety (2002-2003)
- Self rescue concepts (CFD-calculations)
- Program of safety requirements (2006)


Quickscan Spoorzone Delft (1)

Quickscan veiligheid ('++' = hoger veiligheidsniveau, '' = lager veiligheidsniveau, 'OO' = gelijk veiligheidsniveau)				
	Spoorviaduct & omgeving	Nieuw gebied Delft Centraal		
Interne veiligheid				
- Botsing	00			
- Ontsporing		++		
- Brand	++			
- Aanrijding	00			
- Ongevallen met in-	00			
en uitstappen				
- Wateroverlast	00			
- Explosie	++			
- Elektrocutie	00			
- Gaslekkage en/of bedwelming	++			
- Onbeheerste stop	00			

Quickscan Spoorzone Delft (2)

Quickscan veiligheid ('++' = hoger veiligheidsniveau '' = lager veiligheidsniveau)			
	Spoorviaduct & omgeving	Nieuw gebied Delft Centraal	
Externe veiligheid			
- Explosie		++	
- Vrijkomen van		++	
giftige stoffen			
- BLEVE		++	
- Brand		++	
- Ontsporing		++	
Sociale veiligheid			
- Criminialiteit		++	
- Discomfort		++	


Case 2: Project HSL-Zuid

- Project organisation HSL-Zuid
- Characteristics project HSL-Zuid
 - Route with lots of civil structures (tunnels a.o.)
 - National and international transport
 - Type of contracts
- Bored tunnel Green Hart

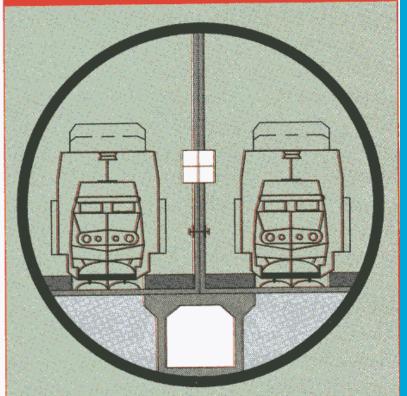
Aiming at Safety

- Integral safety Plan (ISP)
- Safety standard
- Safety chain
- Type of accidents:
 - clash
 - fire
 - derailment
 - collision

Safety standard

- 1. Probabilistic approach
- 2. Deterministic approach
 - (Develop normative scenarios)
- 3. ALARA-principle (As Low As Reasonable Achievable)

Accident type: Derailment

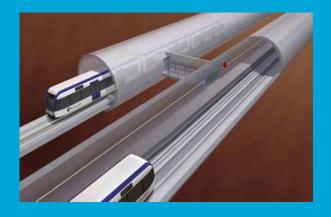

- No level crossings
- Minimal amount of switches
- Train Control System
- Hotbox-detection in train
- Derailment provision in track
- Robustness of trains

Strategy by fire

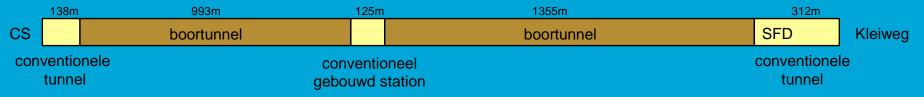
Prevention
 Self rescue
 Aid and assistance

DWARSDOORSNEDE BOORTUNNEL

De boortunnel bestaat uit een geboorde buis met daarin twee sporen die worden gescheiden door een tusssenwand met vluchtdeuren.


Ability to evacuate oneself

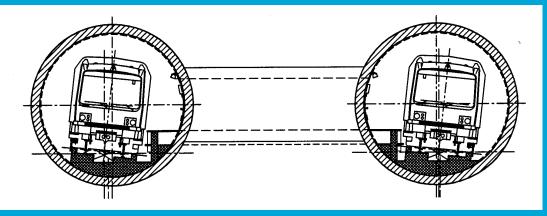
- 5 different fire curves
- Evacuation time from train: 2 minutes
- Width of emergency route: 1,50 meter
- Distance to emergency door: 150 meter



Case 3: Randstadrail

- Lightrail system Rotterdam Den Haag
- Tunnel of 3 km (incl. TBM driven part)
- Via Central Station, Statenweg Station to Kleiweg

Characteristics metro system


- Closed system (vehicles, operator, etc.)
- Stations every 1000 meter (or less)
- Travel time of 1,5 –2 minutes between stations)

Consideration:

"What scenario to facilitate to evacuate oneself?"

Option: Evacuation from tube

- Greater diameter:
 - Wider escape routes
 - More room for smoke outlet
- Installation of ventilation
- More cross connections

Safe Haven Concept

- Measures to prevent departure of malfunctioning metro trains
- Measures to prevent metro train from stopping in the tunnel
- Exploitation model in which the metro train is always able to reach the next station (**free ride**)
- Optimal ability to evacuate oneself in stations

Use of scenario analysis (1)

- How is fire started?: historical data
- How can fire be detected?
- How do metro trains fail and come to a halt in tunnels?
- How could the ability to evacuate oneself and the aid and assistance at stations be optimized?
- What else is there to improve?

Use of scenario analysis (2)

- Systems at the station for detection of heat in the lower bodywork of the metros
- Convert emergency break bridge
- Improve maintenance procedures
- Surveillance in trains and on platforms with cameras or personnel
- Material requirements for redundancy

Case 4: Utrechtse Baan

February 20, 2009

47

Risks layered use of land

Risks during construction period (crossing road)

- Distraction of road users
- Dropping construction parts / waste
- Collision of assisting constructions
- Overload of assisting constructions
- Fire

Risks multispace use

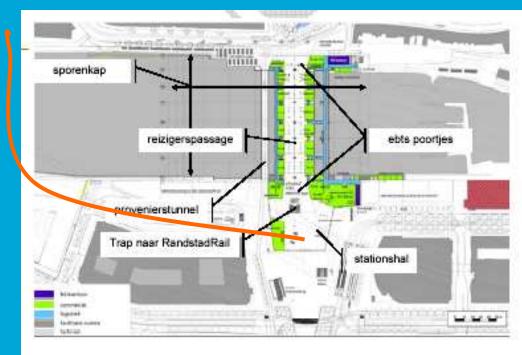
Risks during normal use (1)

- Explosion LPG-lorry under / in front of superstructure
- Burning vehicle under / in front of superstructure
- Inconvenience for users of building
- Distraction road users
- Abrupt transition open-closed
- Falling objects from buildings on road

Risks layered use of land

Risks during normal use (2)

- Fire central under superstructure
- Maintenance road surface
- Maintenance facade of building



Case 5: Rotterdam CS

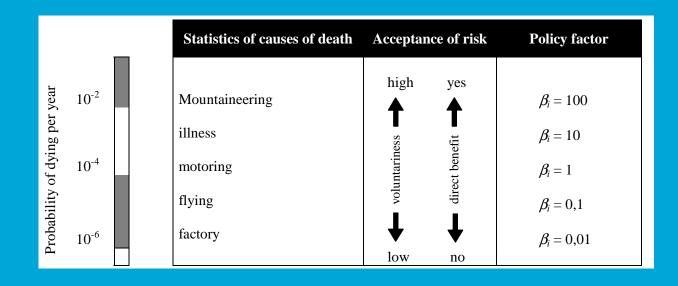
Rotterdam Centraal

- Train (+1),
- Shops (0)
- Metro(-1),
- Bus (0),
- Taxi (0),
- Cycles (-1),
- Kantoor(+1),
- Café, (+1)

Concluding Remarks

Safety process:

- •Cooperation stakeholders for guaranteeing safety (design as well as the exploitation stage)
- •Already in the design stage the safety aspect should be taken into account.
- Cost-effective and systematic approach. Safety is expensive!
- Interaction between components of the system.
- Human factors


Arnhem (22-11-06) February 20, 2009 Rotterdam (21-11-06)

52

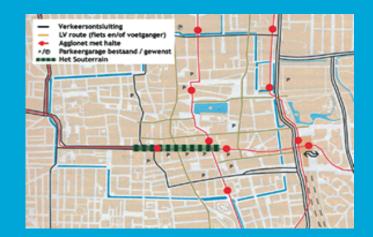
Policy factor

North/Southline

Metro line from the north of Amsterdam to the south (9km)
Bore tunnel of 6km in length
Separate directions of traffic
Cross section or a station each 350m

RandstadRail

- LightRail connection between the Hague, Rotterdam and Zoetermeer.
- Both tram as LightRail vehicles
- Two tunnels:
 - Haagse tramtunnel
 - Statenwegtunnel



RandstadRail track

Haagse tramtunnel – the Hague

- Tramtunnel through the centre of the Hague (1,2 km)
- Two directions of traffic in tunnel (level -2)
- Each 60m emergency exits to the above laying car park (level -1)

Haagse tramtunnel

February 20, 2009


57

Statenwegtunnel - Rotterdam

- The bore tunnel connects Rotterdam Central Station to LightRail track to the Hague.
- Connected to Rotterdams metro system
- Bore tunnel: separate directions of traffic with a length of 3km.
- Every 350m cross-sections.

Track Statenwegtunnel Rotterdam

Safety in tunnels- Dutch legislation

Wet aanvullende regels veiligheid Wegtunnels (WARVW)

- Part A (Process demands)
- Part B (Safety demands/standards for road and rail tunnels)

Two research methods (compulsory):

- Scenario analysis (road/rail tunnels)
- Quantitative risk assessment (no standard model)

Normative scenario for fire

Maximum of 2000 persons on the train

- Fire in the back of the train
- Safe within 15 minutes
 - Train stops outside of the tunnel
 - Train stops within 5 minutes from the start of the fire in the tunnel; evacuation within 10 minutes

