## Tunnels

#### content of the lecture

1st Hour Tunnels •Immersed tunnels •Comparison Bored Tunnels (short) •Land tunnels 2nd Hour Introduction in Shield tunnelling •Pipe jacking & tunnelling •Slurry & hydroshield •Slurry versus EPB •Principles of support pressure

Delft University of Technology, faculty of Civil Engineering

Ir. S. van der Woude

20 February 2009



1

Department of Underground Space Technology

**Delft University of Technology** 

# **Immersed tunnels**

First immersed tunnel in the Netherlands; the Maas tunnel, 1942



### **IMMERSED TUNNELS IN EUROPE**





# **Examples immersed** tunnels in the **Netherlands**

Calland, Piet Hein and 2nd Benelux tunnel



# **Construction proces immersed tunnel**

- Construction dock
- Tunnel elements (with temp. watertights bulkheads)
- Constructing the ramps with the transition structure
- Dredging the immersing trench
- Immersing
- Closure of the joints
- Founding and covering





**T**UDelft





# Water barrier





20 February 2009



# **Transition structure**



20 February 2009



# **BULKHEAD – OUTSIDE VIEW**



20 February 2009







# **Coupling of the elements**





# **Closure joint**





## **Cross section**



- Concrete
- Reinforcement
- Ballast concrete

20 February 2009



# **Design aspects immersed tunnel alignment**

- Cross section
  - Horizontal and vertical clearance (dredged trench)
  - Force equilibrium
- Longitudinal section
  - Ramps
  - Joints
  - Transition structure
  - Horizontal and vertical curve radius
  - Cover
  - Maximum slopes
  - Water barrier



# Design aspects Load cases >>>>4780

- Permanent loads
  - dead weight, water, earth pressure
- Variable loads
  - mobile loads due to transport, temperature
- Accidental loads
  - earthquake
  - explosion / fire
  - collision
  - falling and dragging anchors
  - stranding ships



## **Comparison bored/immersed tunnel**

- Here we see the entrance of
  - Bored tunnel: The Botlek railway tunnel of the Betuwe route.
  - Immersed tunnel: The Botlektunnel Highway
     A15



# **Comparison bored/immersed tunnel**







# When to choose an immersed tunnel (with cut and cover ramps)

- Primarily
  - Crossing of rivers/canals
- Advantages compared with a bored tunnel
  - Shallower
  - Shorter ramps
- Disadvantage compared with a bored tunnel
  - Hindrance during construction caused by
    - Dredging,
    - Transport of elements, Immersing
  - Construction of the ramps are adjacent to immersed tunnel
  - Construction Dock



# When to choose a bored tunnel (with launch and reception shaft)

- Primarily
  - Rivers Canals and any vulnerable object
    - Historic city centre (Amsterdam)
    - Residential areas (den Hague)
    - Infrastructure (also C&P)
- Disadvantage compared with an immersed tunnel
  - Deeper launching and reception shaft of TBM. Longer
- Advantages
  - Little hindrance during construction
  - Shafts can be located on optimal location.



# Land Tunnels

- Cut and cover
  - Sheet piles or diaphragm walls
  - Excavation with struts or anchoring
  - Impermeable layer or dewatering or underwater concrete
  - Construction of the tunnel In situ or prefab.
- Top Down method
- Pneumatic caissons



# **Examples land tunnels in the Netherlands**



HSL-zuid, Betuweroute tunnel Zevenaar and tunnel Giessen

![](_page_21_Picture_3.jpeg)

# **Open building pit**

![](_page_22_Figure_1.jpeg)

## **Cut and Cover Top down methode**

![](_page_23_Figure_1.jpeg)

Building from ground level:

A constructing diaphragm walls B excavating and building roof structure Building below the roof.

C excavating and building floor -1 D excavating and building floor -2 E excavating and building floor -3

20 February 2009

![](_page_23_Picture_7.jpeg)

# **Cut and Cover / Top Down method**

![](_page_24_Picture_1.jpeg)

• Tram tunnel The Hague

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_5.jpeg)

### Cut and Cover Grout arch; Tramtunnel top down method>>> lecture 9

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

# **Principle pneumatic caisson method**

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

# **Caisson method**

• East line Metro Amsterdam

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Picture_4.jpeg)

20 February 2009

![](_page_27_Picture_6.jpeg)

# **Prefab shell tunnel**

![](_page_28_Picture_1.jpeg)

Metro Rotterdam

![](_page_28_Picture_3.jpeg)

20 February 2009

![](_page_28_Picture_5.jpeg)

## **Bored Tunnels Introduction**

![](_page_29_Picture_1.jpeg)

Tunnel-construction under the St. Clair River more than 100 years ago.

20 February 2009

![](_page_29_Picture_4.jpeg)

# **Bored Tunnels in the Netherlands**

![](_page_30_Picture_1.jpeg)

Hubertustunnel the Sophia tunnel and the Botlekrail tunnel

[[[[[inn]]]]]]

# **Constructing a tunnel with a TBM**

## Functions of a TBM:

- Controlled excavation of the ground.
- Support the ground/rock. (The shield)
- Construct the tunnel
- Facilitate the logistics (Transport of soil & tunnel elements & power, etc.).

![](_page_31_Picture_7.jpeg)

## **Constructing a tunnel with a TBM**

Pipejacking

versus

# Tunnelling

Shield and tunnel pushed

- D = 0,8m to ca. 3m
- Limited length
- Lining = pipe
- No sharp curves!

Shield pushes against tunnel

- D > 3m
- Unlimited lengths
- Lining = segmented ring
- Sharp curves!
- 2 additional processes

![](_page_32_Picture_16.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

20 February 2009

![](_page_33_Picture_4.jpeg)

# Tunnelling

- 2 additional processes:
  - Ring erection in the shield
  - Shield tail injection (mortar injection)

![](_page_34_Picture_4.jpeg)

### **Tail-sealing-mechanisms**

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

# Curves in pipe-jacking

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

# **Curves** in Tunnelling

![](_page_37_Figure_1.jpeg)

DOORSNEDE 1-1

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_37_Picture_5.jpeg)

# Different shield types depending on the Geology and other boundary conditions

- **Open Face** (atmospheric pressure)
  - In Rock; hard rock TBM (with grippers)
  - In Soil conditions limited
    - only small diameter and above ground water
      - >>> lecture 12

![](_page_38_Picture_6.jpeg)

Thix-shield

![](_page_38_Figure_8.jpeg)

39

![](_page_38_Picture_10.jpeg)

![](_page_39_Picture_0.jpeg)

20 February 2009

![](_page_39_Picture_2.jpeg)

# Different shield types depending on the Geology and other boundary conditions

- Closed Face (support pressure)
  - In soft soil conditions and in mixed geology
  - Depending on soil conditions different types of support medium
    - Support with bore fluid (bentonite)
      - Slurry shield
      - Hydro shield
    - Support with excavated soil
      - Earth pressure balance shield (EPBshield)
    - Support with Air (only special occasions)

![](_page_40_Picture_10.jpeg)

**EPB-shield** 

![](_page_40_Picture_12.jpeg)

41

![](_page_40_Picture_14.jpeg)

### **TBM: cutting elements and obstacles**

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_4.jpeg)

### **Selection criteria for type of TBM:**

- Geological profile of the project.
- Groundwater pressures (support pressure is normative).
- Depth, horizontal- and vertical alignment of the tunnel.
- Surrounding area (settlements, ground-deformations).
- Logistic / available space.

![](_page_42_Picture_7.jpeg)

### **Slurry shield principle of support pressure**

• **Bentonite = Bore fluid** (is the support medium)

### Functions of the bore fluid

•Maintaining support pressure

- •Building a membrane and/or
- •Creating an invasion zone (plug the pores)

•Transport of the soil particles to the Separation plant

![](_page_43_Figure_7.jpeg)

Figuur: 6.6 Indringdiepte van vloeistoffen, Jancsecz (1994), figuur 14.

![](_page_43_Picture_9.jpeg)

# **Slurry shield principle of support pressure**

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

### Slurry shield versus Hydro shield

Slurry shield Versus

Hydro shield

- Vulnerable for errors pumps
- More simple TBM
- Japan and pipe jacking

- Air bubble levels out
- Accurate support pressure

- Europe

![](_page_45_Figure_9.jpeg)

![](_page_45_Picture_10.jpeg)

### **Principles of slurry shield and EPB**

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

20 February 2009

![](_page_46_Picture_4.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_47_Picture_1.jpeg)

# **Earth Pressure Balance (Elastic soil mixture from excavation face)**

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_49_Picture_0.jpeg)

# Separation plant (cost factor)

![](_page_50_Picture_1.jpeg)

Separation plant Groene Hart, 2500m3/hr supplied by MS in 1998

![](_page_50_Picture_4.jpeg)

# **Slurry versus EPB**

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_3.jpeg)

![](_page_51_Figure_4.jpeg)

Einsatzbereich des Slurry-Shields in Abhängigkeit von der Bodenart [207]

Bild 11-5

Einsatzbereich der Erddruckschilde in Abhängigkeit von der Kornverteilung des Bodens

| Slurry-shield<br>non cohesive | versus<br>versus | EPB-shield<br>cohesive |  |
|-------------------------------|------------------|------------------------|--|
| 20 February 2009              |                  | 52                     |  |
|                               |                  |                        |  |

![](_page_51_Picture_9.jpeg)

### **EPB versus Slurry**

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_2.jpeg)

# **Support pressure EPB- versus Slurry**

#### Safety against excavation face collapse:

$$P = 1,5 * \sigma'_{h} + 1,05 * \sigma_{w}$$

(all levels of cross section top and bottom) The bottom is normative

#### Safety against blow out:

$$P_{max} = \sigma'_{v} / 1,1$$

(for all levels) the top is normative >>> CT 5305 & CT 5330 Foundation Eng. and Underground Construction

### >>>CT 5305 & CT 5330 Foundation Eng. and Underground Construction

20 February 2009

![](_page_53_Picture_10.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_55_Picture_0.jpeg)

# **Support pressure EPB- versus Slurry**

#### Ideal situation for support pressure

![](_page_56_Figure_2.jpeg)

#### Support with bore fluid

![](_page_56_Figure_4.jpeg)

#### "worst case" air support

![](_page_56_Figure_6.jpeg)

#### Support with earth paste EPB

![](_page_56_Figure_8.jpeg)

# **Summary Slurry versus EPB**

| Slurry shield                  | EPB-shield                     |  |  |
|--------------------------------|--------------------------------|--|--|
| support with (bentonite) fluid | support with the excavated     |  |  |
|                                | soil                           |  |  |
| minimum cover +/- 1 D          | minimum cover +/- 0,5 D        |  |  |
| in non- cohesive soil          | in cohesive soil               |  |  |
| extraction with pumps          | extraction with screw conveyor |  |  |
|                                | and ?                          |  |  |
| Pressure can be adjusted       | pressurre fluctuations         |  |  |
| accurateley                    |                                |  |  |
| Separation plant               | _                              |  |  |
| simple TBM                     | complex TBM (high torque,      |  |  |
|                                | more wear, conveyors)          |  |  |
| overall higher costs           | overall lower costs            |  |  |
| February 2009 58               |                                |  |  |

![](_page_57_Picture_2.jpeg)

2(

# Extend the use of EPB in unfavourable geological conditions

![](_page_58_Figure_1.jpeg)

#### Bild 11-5

Einsatzbereich der Erddruckschilde in Abhängigkeit von der Kornverteilung des Bodens

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

![](_page_58_Picture_6.jpeg)

# Extend the use of EPB in unfavourable geological conditions

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

![](_page_59_Picture_3.jpeg)

![](_page_59_Picture_4.jpeg)

![](_page_59_Picture_5.jpeg)

# **Botlek Tunnel EPB in sandy soil**

![](_page_60_Picture_1.jpeg)

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

![](_page_60_Picture_4.jpeg)

### Summary

- Immersed tunnels
- Building techniques for land tunnels.
- Functions of a TBM
- Pipe jacking versus tunneling
- Slurry versus Hydroshield
- Principle of support pressure
- Slurry versus EPB
- Extending the use of an EPB TBM

### >>>>chapter 7, 8, 9, 10 of the reader

![](_page_61_Picture_11.jpeg)

# **CT 3300 in relation to other courses**

- CT 3300 Use of underground space.
  - Broad introduction
  - "Inleiding ondergronds bouwen"
- CT 4780 Special Topics
  - New developments on UC
- CT 5305 Bored and immersed tunnels
  - In detail
- CT 5330 Foundation Eng. and Underground Construction
  - Amongst others Bored tunnels in detail
- CT 5740 Trenchless Technology
  - Pipeline construction techniques In detail

![](_page_62_Picture_13.jpeg)

### Tail-sealing-mechanisms (S1 seal)

• Rubber tail sealing mechanism

![](_page_63_Figure_2.jpeg)

![](_page_63_Picture_3.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_64_Picture_1.jpeg)

### **Slurry shield**

1 Cutting wheel

- 2 Air bubble
- 3 Bentonite suspension
- 4 Drive unit
- 5 Stone crusher
- 6 Push cylinder
- 7 Air lock
- 8 Steering cylinder Shield tail

9 Erector
10 Segment conveyor
11 Slurry pump
12 Segment crane
13 Main electric panel
14 Cable reeling drum
15 Discharge line

16 Feed line

![](_page_65_Picture_11.jpeg)

![](_page_65_Picture_13.jpeg)

### **Segments tunnel lining**

![](_page_66_Figure_1.jpeg)

- Variation of the position of left and right segments change the dirrection of the tunnel
- Keystone closes the arch

![](_page_66_Figure_4.jpeg)

![](_page_66_Picture_5.jpeg)

### Next year,

boulder clay foto TBM delfzijl.
Foto groene Hart
Tunnel lining Engineering

![](_page_67_Picture_2.jpeg)

**T**UDelft

68