Water management in urban areas Design, Getting started

Dr. ir. Frans H.M. van de Ven 19-5-2009

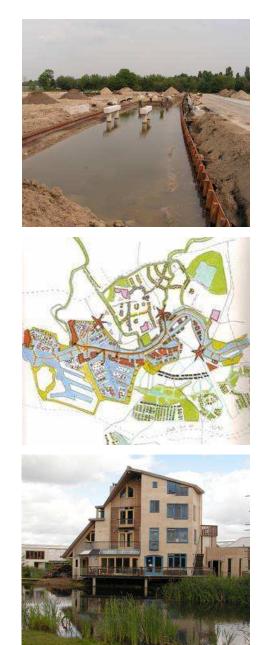
How to start?

Water management in urban areas – Design, Getting started 2 | 41

How to start?

1. Objectives

- Ambition / Vision
 - Sustainability
 - Robustness
 - Added value
- Standards / Requirements
 - Freeboard
 - Drainage depth
 - Storage capacity
 - Flow velocity's
 - Quality aspects


- 2. Design load
 - Result from processes
 - Design storms
 - Rainfall duration curves
 - Stormwater runoff pollution

Content

Objectives

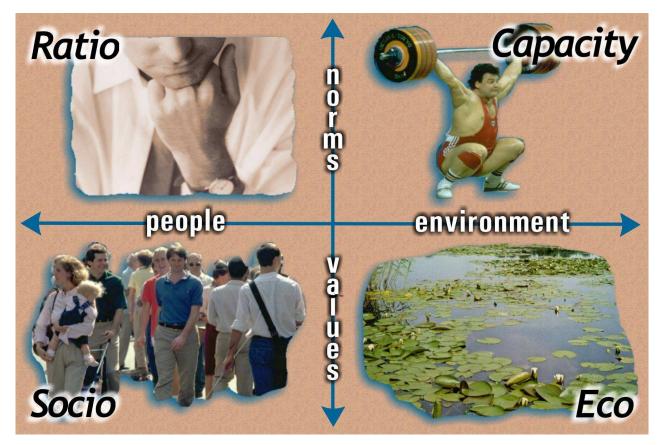
- Sustainability
- Vulnerability
- Risk management
- Standards
- Design loads
 - Design storms
 - Rainfall duration curves

Objectives Sustainability

• What is sustainable development?

'Meeting the needs of the present without compromising the ability of future generations to meet their own'

'Maintaining the stock of natural capital'


- Two aspects of approach
 - Perspective
 - Judgement

Objectives

Sustainability

Source: M.A. Rijsberman and F.H.M. van de Ven, 2000. Different approaches to assessment of design and management of sustainable urban water systems.

Water management in urban areas - Design, Getting started 6 | 41

exploitation optimising Multi-criteriaanalysis	reductionism technique risk /sensivity analysis quantitative dogmatic	Environmental science Environmental technology 'ecological sustainable' Life cycle analysis (LCA)
politics issues interests conflicts Stakeholders choices subjective	Ratio people people environment Socio	objective best available technique resilience (ir)reversible Precaution princples visio/'religion
images Future value Experience value Usage value	pragmatic qualitative 'guts' ethics holism	Guidance principles 'no regret' strategy

Water management in urban areas – Design, Getting started 7 | 41

• Definition (Leurs, 2003; Turner et al., 2003; IPCC, 2001; Schiller et al, 2001):

'**sensitivity** of a system for exposure to shocks, stresses and disturbances, or the degree to which a system is **susceptible** to adverse effects'

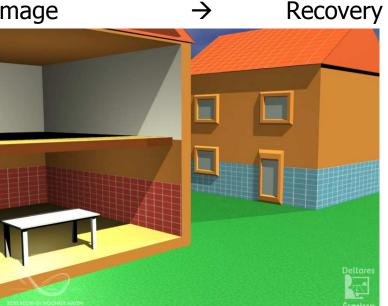
- Environmental variation:
 - Variation of water levels
 - Variation of water resources
 - Variation of future climate
 - Etc

- To deal with environmental variation:
 - Reduce variation → Threshold capacity

Water management in urban areas – Design, Getting started 9 | 41

- To deal with environmental variation:
 - Reduce variation
 - Reduce damage

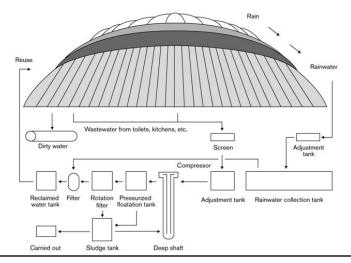
- \rightarrow
- Threshold capacity
- \rightarrow Coping capacity



• To deal with environmental variation:

- Reduce variation → Threshold capacity
 Reduce damage → Coping capacity
- Deal with damage

Recovery capacity



- To deal with environmental variation:
 - Reduce variation \rightarrow
 - Reduce damage
 - Deal with damage
 - Deal with future variation

- \rightarrow Coping capacity
- \rightarrow Recovery capacity
- \rightarrow Adaptive capacity

Numerous 'hard' and 'soft' remedies

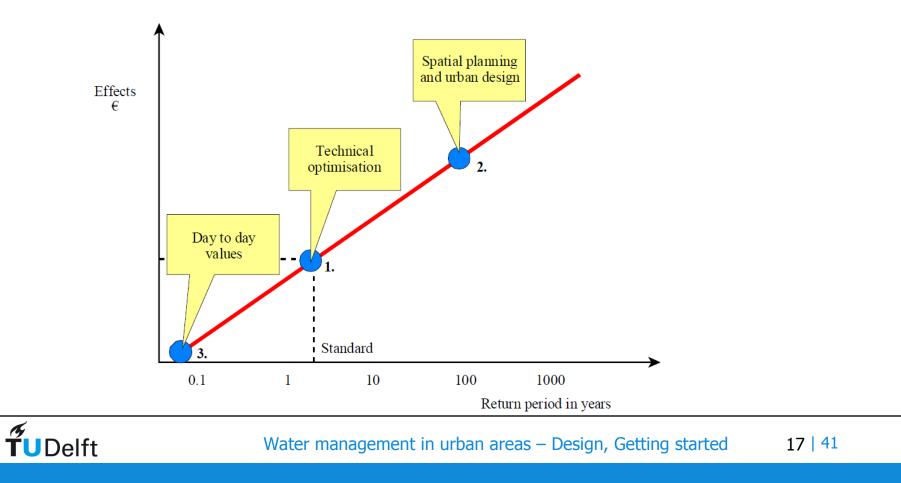
	Flood control	Flood control	Water supply	Water supply
Threshold Capacity	Higher dikes	Increase river capacity	Increase reservoir capacity	More efficient supply infrastructure
Coping Capacity	Improve risk perception	Emergency plan & warning	Backup supply facilities	Individual storage
Recovery Capacity	Disaster fund	Insurance	Multi source water supply	Disaster funds
Adaptive Capacity	Flood proof & flexible urbanization	Small scale pilot projects	Flexible portfolio of sources	Small scale pilot projects

Objectives

Vulnerability

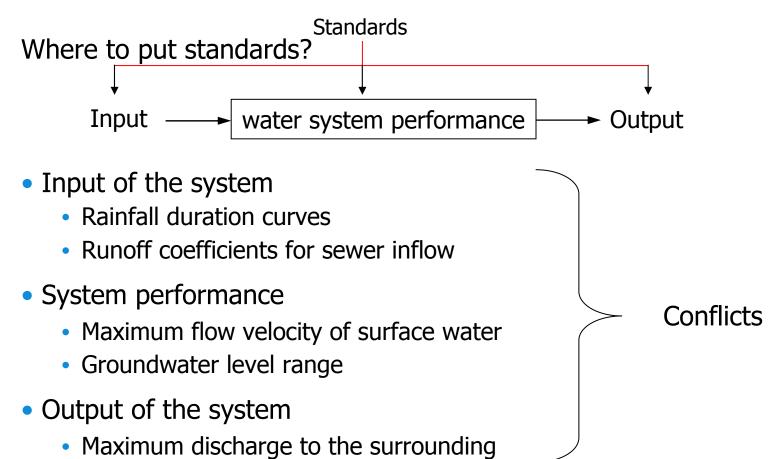
	Туре	Time orientation	Responsibility
Threshold Capacity	Damage prevention	Past	Clear
Coping Capacity	Damage reduction	Instant	Not clear
Recovery Capacity	Damage reaction	Instant/ future	Not clear
Adaptive Capacity	Damage anticipation	Future	Undefined

- Trying to control environmental variation with threshold capacity only introduces increased vulnerability for rare (and extreme) incidents
- Vulnerability of a system is difficult to assess because components of vulnerability are strongly interrelated.
- 4 component vulnerability framework supports a more comprehensive development strategy


Objectives Risk management

- Basic approach in design is economical optimization of construction and management based on statistical standards
 - Capital charges
 - Maintenance costs
 - Energy costs
 - Management costs
 - Costs because of damage
 - Social-communal cost
 - Revenue (negative costs)

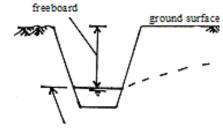
Objectives Risk management


• Three points approach (Geldof and Kluck, 2008)

Objectives

Standards

TUDelft


Water management in urban areas – Design, Getting started 18 | 41

Standards Open water \rightarrow freeboard

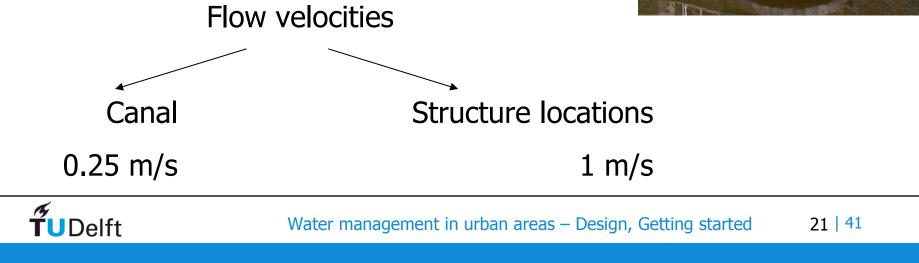
Prevention against flooding

- 0.9 1.3 m max level rise once in 100 years
 - Depends on inflow situation
- Related to Discharge capacity and Storage
 - $S(t+\Delta t) = S(t) + I Q$
 - H = f(S)
 - Q = Ch 3/2B or
 - $Q = Q_{pumping station}$

moat-, canalor polderlevel

Standards Open water →water depth

- Maximum water depth \rightarrow 1.2 m
 - Maintenance
 - Prevention wealthy growth water plants
 - Safety
 - Drowning



Standards Open water → Flow velocity

- Protection
 - Too fast \rightarrow erosion
 - Too slow \rightarrow algae
- Depends on soil type

Standards Open water → Storage capacity

- Input
 - Rain
 - River
- Location
 - Surrounding
 - Height / depth
 - Drainage system
- Output
 - Drainage capacity
 - Pump capacity

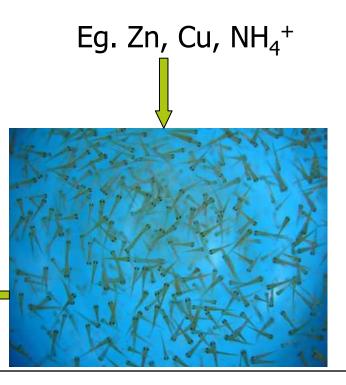
Hydrological model

Standards Open water \rightarrow water quality

- Natural ecological environment
 - Flora → sediment
 - Fauna
- Recreation
 - Health
- Sewer overflows
- Traffic
- Dredging

MTR Max. allowed risk

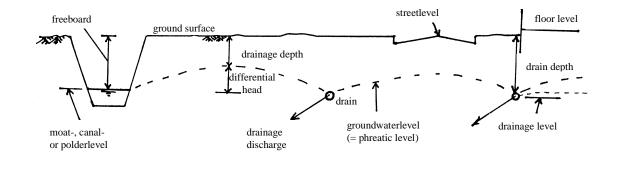
Water management in urban areas – Design, Getting started 23 | 41


Standards

Open water \rightarrow water quality

- Oxygen
 - Below 5 mg/l \rightarrow Fish mortality
- Ecotoxology
 - $LD_{50} \rightarrow$ Lethal Dose 50%
 - NOEC \rightarrow NO Effect Concentration
 - MR \rightarrow Maximum Risk
 - MTR \rightarrow Maximum allowed Risk
 - SW → Target Value

Maximum concentration



Standards Ground water → Drainage depth

Maximum groundwater level

Numerous land use function \rightarrow GGOR

Standards

Ground water \rightarrow Drainage depth

Activity/destination	Steady drainage- computation
	Drainage depth
I. during the construction phase	(m below ground level)
1. construction of structures	0.60- 0.70
1. laying of telephone-cables	0.50- 0.60
Low voltage cables	0.60
Gas lines	0.65-1.00
High voltage cables	0.90
Sewer pipes	1.00- 3.50
1. construction of primary roads	1.00
secondary roads	0.70
squares, parking lots	0.40
1. accessibility	0.50-0.70
Summary: during the construction phase	0.70- 0.80

Activity/destination	Steady drainage- computation
	Drainage depth
II. the habitation phase	
1.structures	0.70
1.cables and pipelines	0.60- 1.00
1.primary roads	1.00
1.secondary roads	0.70
1.industrial areas, centre areas	0.70
Summary: the habitation phase	0.70
Gardens, public gardens, parks	0.50
Camping areas	0.50
Graveyards	0.30 below underside coffin
Sport fields	0.50
Non-steady drainage computation	0.70

Standards Ground water \rightarrow water quality

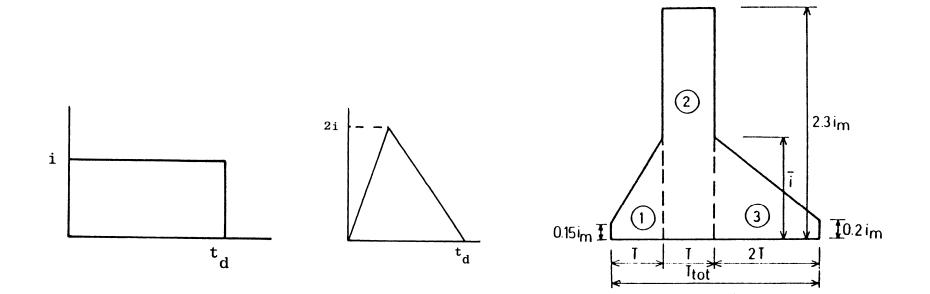
- Irrigation, process water, drinking water
- Materials in the ground
 - Aggressive groundwater
 - Low pH
 - CO₂
 - H₂S

1					
	3	-3			
		122			
			The second	(~) (
			E Sta		
			in the		I.
÷.,					

Class I	: not aggressive;
Class II	: lightly aggressive;
Class III	: moderately aggressive;
Class IV	: severely aggressive;
Class V	: very severely aggressive.

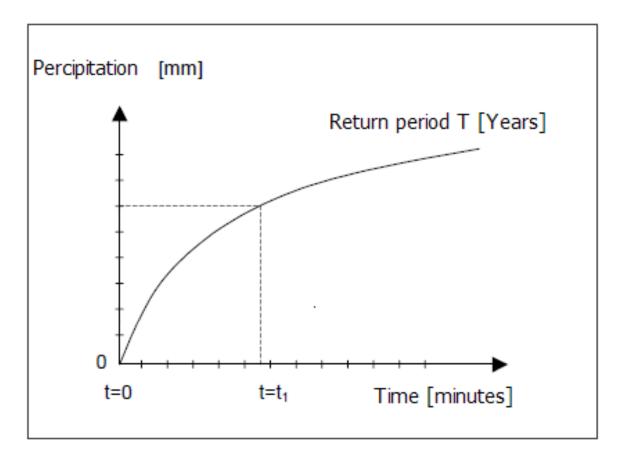
Standard design storms

- What is a standard storm?
 - What is important for design purposes...
- How much mm water will fall?
- For how long will it rain?
- How intense is the rain?
- Where will the rain fall?
- How many times can we expect a heavy storm?
- ...?



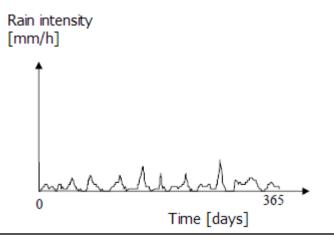
Standard design storms

Depends on purpose


Depth-Duration-Frequency curve method

• Method for calculating discharge capacity/storage capacity

- Prediction of maximum rain within a certain time
 - t=0 (begin), t=1 (end)
- Prediction of maximum rain returning every T years
 - T=return period (Chance = 1/T*100% T>1 year)
- Presentation of historical rain data


Depth-Duration-Frequency curve method

Constructing DDF-curve (1) Annual maxima

- Input
 - Rain data
 - At least 2 times the desired T
 - Scale of x-axis must be the same as measuring interval
 - Continue data
 - For T = 2, 5, 10 years and t step is 10 minutes \rightarrow 52560 measurements
 - Calculate the moving period for every year (max. rain 10, 20, 30 180 minutes)

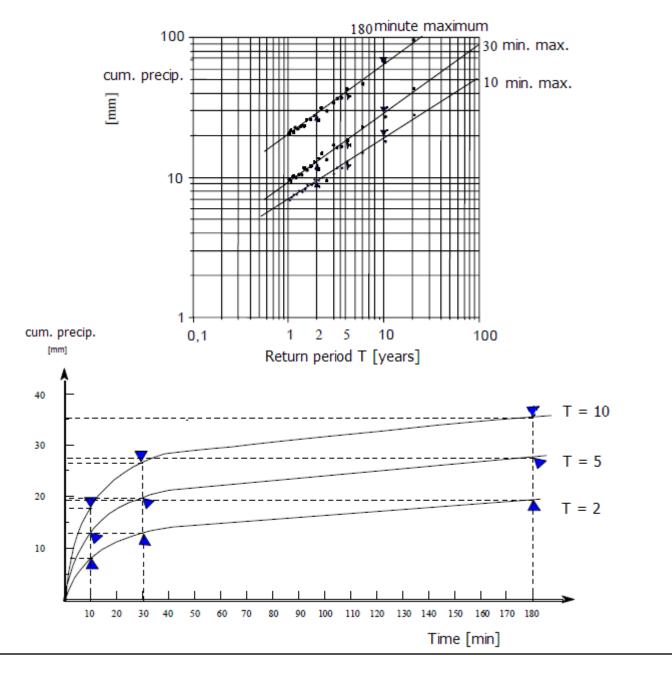
TUDelft

Constructing DDF-curve (2) Annual maxima

• Results cumulative rainfall

10 min. max.	20 min. max.	••• ••• •••	170 min. max.	180 min. max.
mm. year 1	mm. year 1		mm. year 1	mm. year 1
(y _{10,1})	(y _{20,1})		(y _{170,1})	(y _{180,1})
mm. year 20	mm. year 20		mm. year 20	mm. year 20
(y _{10,20})	(y _{20,20})		(y _{170,20})	(y _{180,20})

• Determine how many times a maximum returns for T=2, 5, 10 years


 $T(y_{i,j})=(N+1)/m(y_{i,j})$

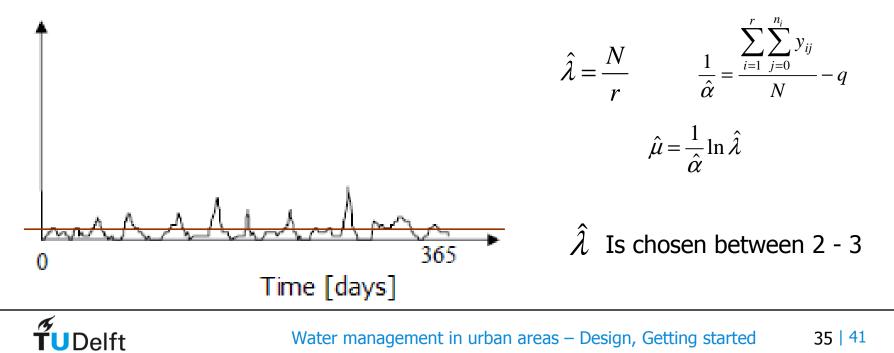
$$p = \frac{m - 0.44}{N + 0.12}$$

10 min. max.	Order	m	Т
y _{10,1}	y _{10,7}	1	21
y _{10,2}	y _{10,4}	2	10.5
y _{10,20}	y _{10,12}	20	1.05

Water management in urban areas – Design, Getting started 33 | 41

Water management in urban areas – Design, Getting started 34 | 41

Constructing DDF-curve Peak over treshold


More accurate for short periods

Gumbel probability distribution

$$\Pr{\underline{x} \le t} = \exp(-\exp(-t))$$

Rain intensity [mm/h]

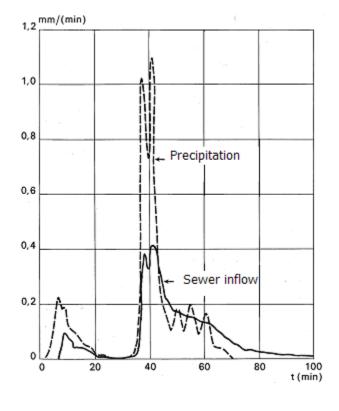
$$\Pr\{\underline{x} \le \hat{\alpha}(y - \hat{\mu})\} = \exp(-\exp(-\hat{\alpha}(y - \hat{\mu})))$$

Storage capacity

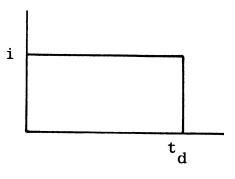
In – Out = Storage

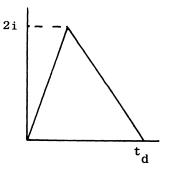
Warning:

• DDF assumes no discharge delay


• DDF shows no information about the development of the storm

• DDF assumes no different flow symptoms

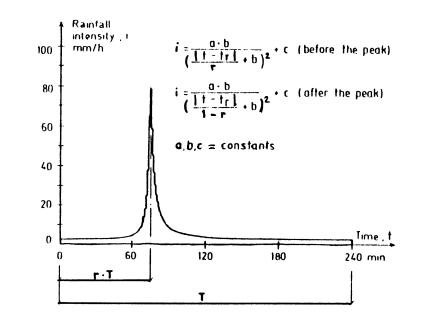

• Errors to 30 – 40 % are no exception!


Development of the storm When does the peak occur?

Rainfall duration curve constant

Rainfall duration curve triangular

Improved design storm Chicago storm

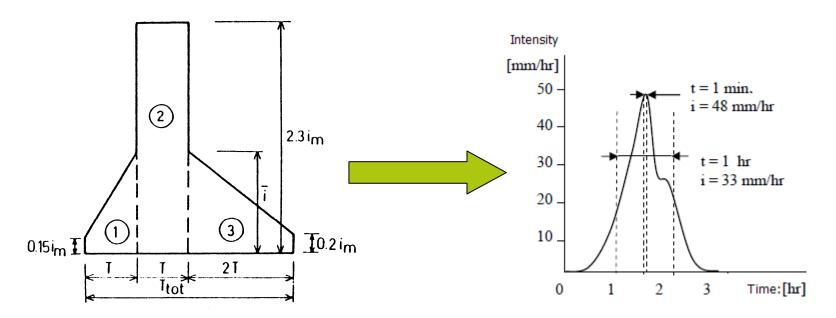

- 4. Intensity before peak $i = \frac{a\{(1-b)(t_b/r)^b + c\}}{\{(t_b/r)^b + c\}^2} \qquad 5. \text{ Intensity after peak}$ $i = \frac{a\{(1-b)(t_a/(1-r))^b + c\}}{\{(t_a/(1-r))^b + c\}^2}$
- 1. First movement of a storm

$$\bar{t} = \frac{\Delta t}{t_d P} \sum_{j=1}^n (j - 0.5) d_j$$

- 2. t_m (Time peak occurs)
 - $\frac{t_m}{t_d} = 3\bar{t} 1$
- 3. Fomula DDF curve

TUDelft

$$\bar{i}\frac{a}{t_d^b+c}$$

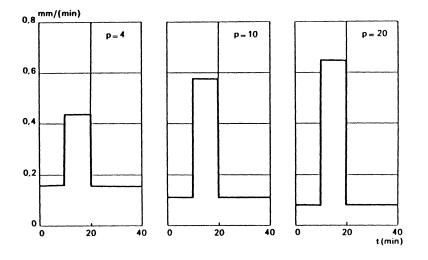


Water management in urban areas – Design, Getting started 38 | 41

Improved design storm Sifalda

Intensity and duration of part 2 from DDF

Example of observed storm



Part 2 shows no variation in precipitation intensity

Improved design storm Inflow storm

- 40 minute storm with T=2 years
 - Peak return period = 2, 5, 10 years

Design storms Overview

Design storm	Result of comparison (various sources)
Rainfall duration curve constant	Under estimates runoff peaks for large return periods (e.g. 50% under estimation of the peak runoff of an observed storm with a return period of 10 years).
	Limited under- and over estimation with before the storm wet conditions (in case in the area the ground is sensitive therefore).
	Under estimates the peak runoff (15-40%) for dry conditions previous to the storm, in areas with a low pavement-percentage.
	Under estimates the peak runoffs (5-20%) for areas not supplying runoff from un-paved area.
Rainfall duration curve triangular	Over estimates the peak runoff with wet conditions before the storm and smaller under- and over estimation with dry conditions before the storm.
Chicago design storm	Over estimates the peak runoff (ca. 75%) with time steps 1 and 2minutes
	Little over estimation of the peak runoff (ca. 5%) and some under-estimated peak runoffs
Sifalda	Under estimates the quantity of precipitation with storms of short duration and over estimates these with long duration.

