#### Water management in urban areas Design, Soil & Elaboration

Dr. ir. Frans H.M. van de Ven 25-5-2009



#### Content

- Introduction
- Accessibility and bearing capacity
- Permeability
- Consolidation
- Filling methods
- Selection of a filling method
- Elaborating on the water assignment





#### Introduction

#### • Building site preparation evaluation based on:

- Development strategy
- Investment costs
- Maintenance costs
- Groundwater management
- Physical conditions of the site
  - Accessibility and bearing capacity
  - Permeability
  - Consolidation





### Accessibility and bearing capacity Definition

• Accessibility

Possibility to drive or walk on a terrain

- Supply and processing of construction material
- Transport of heavy equipment
- Bearing capacity Capacity to absorb loads
  - Foundation pressure of structures, sewer pipes, etc.
  - Bearing of roads
  - Storage of construction material



## Accessibility and bearing capacity Responsibility

- Municipality
  - Only accessibility is required
- Contractor
  - Total quality of the construction site
- Scientific approach
  - Overall quality and cost evaluation

#### In practice, benefits and costs have different actors



## Accessibility and bearing capacity Requirements

- Accessibility by motorised traffic
  - Dependent on equipment type and engine power
  - Tractor
  - Mobile crane on tyres
  - Mobile crane on rails with wooden sleepers
- Storage of materials
  - Dependent on accessibility of the site, the kind of material and the need to keep the material clean
  - Near the construction roads
  - Bricks, sand, cement
  - Proper cover
- Earth foundation of roads
  - Consolidation
  - Drainage



200 – 300 kN/m2 2000 kN/m2 2000 – 5000 kN/m2

400 kN/m2

### Accessibility and bearing capacity Bearing capacity

Dependent on degree of saturation and organic content

| Type of soil             | Wet                       | Dry                  | Note                                  |
|--------------------------|---------------------------|----------------------|---------------------------------------|
| Slurry-sand              | 200-600 kN/m <sup>2</sup> | 400kN/m <sup>2</sup> | Dependent of the density (compaction) |
| Sandy clay<br>(mature)   | 50 kN/m <sup>2</sup>      | 400kN/m <sup>2</sup> |                                       |
| Sandy clay<br>(immature) | 50 kN/m <sup>2</sup>      | -                    |                                       |



#### Permeability

- Ability to transfer water through the soil
- Strong influence on building site preparation phase
- Can decrease drastically during the construction phase
- Requires extra attention at slurry filled sites





#### Consolidation

#### • Subsidence caused by increased loads

- Raising of the terrain
- Lowering of the groundwater
- Enhancing soil characteristics ('grondverbetering')
- Development of the subsidence (Terzaghi)
  - Consolidation is a slow process (> 30 years)
  - Residual subsidence has to be accepted ( $\pm$  0.1 m)
- Consolidation can be enhanced by vertical drainage (very costly)



### Filling methods Variety's

- Integral raise
  - Complete raise of the site with > 0,7 m sand
- Excavation method
  - Filling of sand below pavement and crawlspace
- Other methods
  - Partial filling
  - Filling with EPS







### Filling methods Integral raise

- Sand layer on the entire site
- > 0.5 m sand realises sufficient bearing capacity
- Due to tracks > 0.7 m is applied
- Extra raise to maintain sufficient freeboard and drainage depth
- Minimal soil and sand movement (soil balance)







Water management in urban areas – Design, Soil & Elaboration 12 | 33

## Filling methods

Excavation method (cunettenmethode)

- Soil is excavated out of the road profile and crawlspaces
- Sewer trenches and ditches often filled as well
- Raising of new ground level depends on freeboard
- No consensus on thickness and quality of the fill

|                               | Sandy soils | Clay on firm<br>Underground | Clay on weak<br>Underground |
|-------------------------------|-------------|-----------------------------|-----------------------------|
| Major roads                   | 0.50        | 0.60                        | > 1.00                      |
| Residential streets           | 0.30        | 0.40                        | 0.60                        |
| Parking lots                  | 0.20        | 0.40                        | 0.60                        |
| Bicycle- and pedestrian paths | 0.15        | 0.20                        | 0.30                        |



## Filling methods

#### Excavation method (cunettenmethode)

#### Tertiary roads



#### Sewer trenches in sand



#### Sewer trenches in clay



#### Sewer trenches in peat





**T**UDelft

Water management in urban areas – Design, Soil & Elaboration 14 | 33

#### Filling methods Other methods

- Combinations of integral raising and excavating based on soil characteristics
- Filling with other materials
  - EPS





Water management in urban areas – Design, Soil & Elaboration 15 | 33

# Selection of a method

#### **Evaluation aspects**

- Development strategy
- Use of sand and topsoil
- Initial conditions
- Construction requirements
- Preparation for habitation
- Maintenance
- Environmental aspects

#### Multi-criteria analysis



## Selection of a method Direct costs

Percentage of pavement
Percentage of open water
Percentage of vegetation (concentrated in lots)





# Selection of a method

#### Indirect costs

- Integral raise
  - Interest loss over the invested capital for building site preparation
  - Interest loss over the acquisition cost of the entire building site
  - Maintenance due to extra subsidence
- Excavation method
  - Limited production during rain
  - Extra transport facilities (steel plates)
  - Extra construction costs of cables and pipes
  - Extra costs of drainage system
  - Maintenance due to unequal subsidence





# Selection of a method

#### Summary

|                                          | Integral fill | Cunette method |
|------------------------------------------|---------------|----------------|
| Planning                                 | +             |                |
|                                          |               |                |
| Sand consumption                         | -             | +              |
| Subsidence                               | -             | -              |
| Preparation for construction, earthworks | +             | -              |
| Preparation for construction, other work | +             | -              |
| Construction of houses                   | +             | -              |
| Preparation for habitation               | +             | -              |
| Loss of interests                        | -             | +              |
| Saving existing vegetation               | -             | +/-            |



#### Elaborating on the water assignment

- Step 1: Surface water
- Step 2: Water quality
- Step 3: Groundwater



# 1.d. Determine required storage Storage





### 1.d. Determine required storage Hydrological model (sobek)





Water management in urban areas – Design, Soil & Elaboration 22 | 33

# 3.b. Type of drainage system Public

Road-excavation drainage

Pavement





# 3.b. Type of drainage system Public

**T**UDelft





#### 3.b. Type of drainage system



**T**UDelft

Water management in urban areas – Design, Soil & Elaboration 25 | 33

# 3.b. Type of drainage system Private





Single area drainage





Combined area drainage





Water management in urban areas – Design, Soil & Elaboration 28 | 33



View from above





#### Maintenance



Water management in urban areas – Design, Soil & Elaboration 30 | 33

# 3.d. Type of drainage tubes Threats

During construction



Maintenance during habitation





### 3.d. Type of drainage tubes Reducing risks

- Drains in coarse aggregate profile
- Soil characteristics enhancement with coarse aggregate
- Stiff PE drains instead of flexible PVC drains

#### Computations according to the top of the profile!



**T**UDelft





Water management in urban areas – Design, Soil & Elaboration 32 | 33

# 3.d. Type of drainage tubes Dimensioning of the drains

- 1. Available pipe diameters
- 2. Minimum diameter (>50 mm)
- 3. Hydraulic capacity
- Flexible corrugated PVC drains

Maximum area to be drained (Dekker and Ven)  $(h)^{\frac{2}{3}}$ 

$$A = l.L = 2.27 \cdot 10^7 q_d^{-1} d_e^3 \left(\frac{h}{L}\right)^2$$

- drain distance [m]
- L drain length [m]
- q<sub>d</sub> design discharge [m/d]
- h available pressure head [m]
- $d_e$  effective diameter [m] =1.04·D<sub>i</sub> 0.008
- D<sub>i</sub> inside diameter



PE drains of IT sewer
 Energy losses (Colebrook)