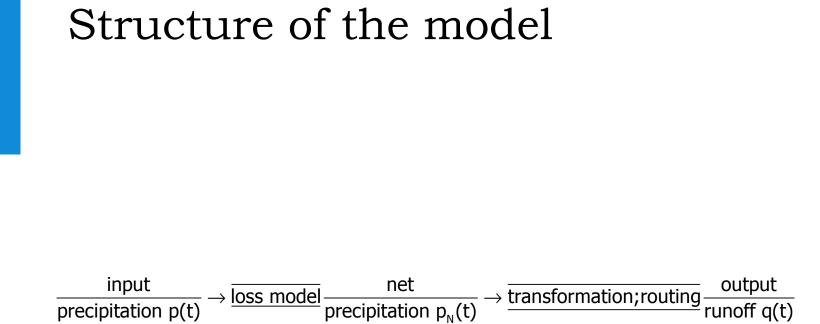
Water management in urban areas Design, Computation methods

Dr. ir. Frans H.M. van de Ven 25-5-2009

Runoff

- Many processes influence the runoff \rightarrow simplified model
 - Stochastic
 - Probability input \rightarrow probability output
 - Parametric
 - Input \rightarrow mathematic relations \rightarrow output
 - Deterministic
 - Description of the physical reality
- Water simulation packages
 - Storm Water Management Model (SWMM)
 - STORM ILLUDAS
 - The Wallingford Simulation Package (InfoWorks)
 - MOUSE
 - SOBEK

Water management in urban areas – Design, Computation methods 2 | 16



Loss-models

- Percentile
- φ-index
- Exponential loss-model
- Curve-number method
- First loss is estimated with help of:
 - Area characteristics (which ones?)
 - Rainstorm characteristics

Transformation models

- Transform net precipitation into design run-off
- Various types
 - Deterministic / Parametic
 - Stady state / time dependant
- If needed add more complexity

Transformation models Rational method (Lloyd-Davies)

A simple and consequently rough method

 $Q_p = C^* i^* A$

- Q_p maximum runoff [m³]
- C runoff coefficient
- i design precipitation intensity [m³s⁻¹ha⁻¹]
- A catchment of drainage [ha]

Transformation models Rational method (Lloyd-Davies)

Dimensioning the pipe diameter (iterative)

$$Q_p = i^* A_{paved}$$

- 1. Determine A_{paved}
- 2. Choose D_I
- 3. Compute velocity v_i (Manning/Colebrook)
- 4. Compute 'time of concentration' $t_c t_c = t_e + t_v$
- 5. Choose a return period
- 6. Derive i from DDF-curve

- 7. Compute runoff with Q=i*A_{paved}
- 8. Compute the capacity of the pipe $Q_{cap} = \frac{1}{4}v_{i*}\pi^*d_i^2$
- 9. If $Q > Q_{cap}$ repeat procedure from point 2 with a larger diameter. If $Q < Q_{cap}$ than d_i is the minimal required diameter.

Transformation models Rational method (Lloyd-Davies)

The most essential assumptions

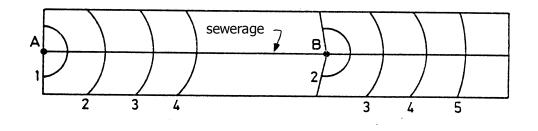
- Steady and homogeneously distributed design precipitation intensity
- Return period of <u>top</u> runoffs is equal to the return period of precipitation events
- Velocity of the runoff wave is equal to the flow velocity in the completely filled pipe.
- Time of concentration is not dependent on the precipitation intensity.
- Runoff-coefficient is not related to the physical processes, but set 1 for paved area and 0 for un-paved area.

Transformation models Time area method

- Area that contribute to the runoff
- On basis of routing velocity

$$Q(t) = \sum_{i=1}^{n} \Delta A_{j} I_{i}$$

with $j = \frac{t - (i - 1)\Delta t}{\Delta t}$ and $t = \Delta t, 2\Delta t, 3\Delta t$



A, B: inlet points

runoff time to point A

Water management in urban areas – Design, Computation methods 9 | 16

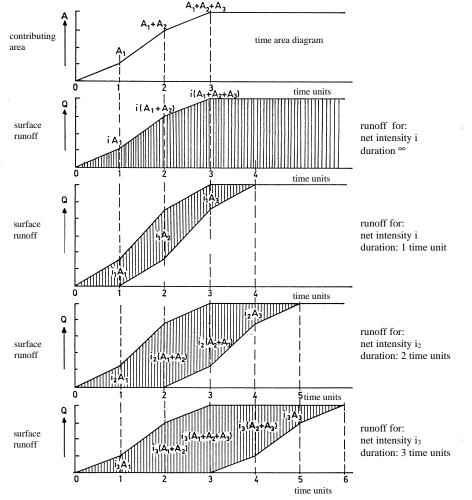
Transformation models Tangent method

 Compensating the increasing surface for reduction of precipitation intensity

$$i = \frac{B}{\left(t+C\right)^n} \qquad \& \qquad A = \frac{Q}{i}$$

TUDelft

$$A = \frac{q(t+C)^n}{B}$$

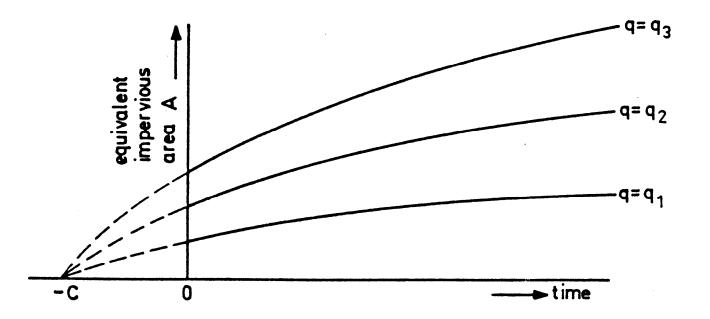


Water management in urban areas – Design, Computation methods 10 | 16

Transformation models

Tangent method

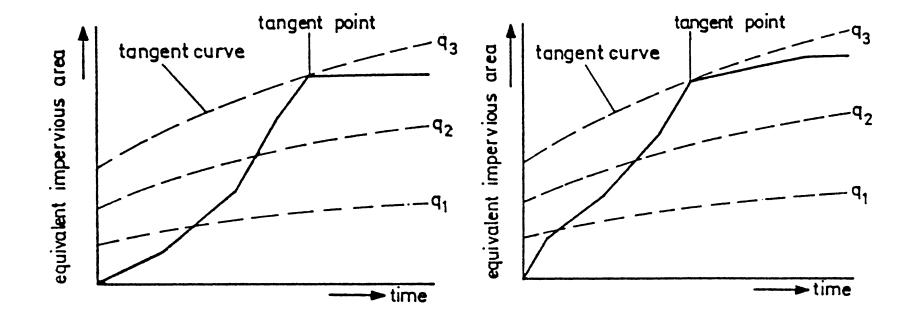
ŤUDelft



Water management in urban areas – Design, Computation methods 11 | 16

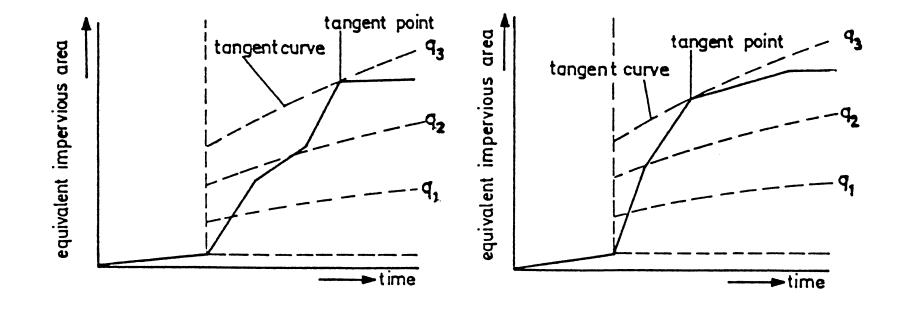
Transformation models Tangent method

TUDelft



Transformation models Tangent method

TUDelft



Water management in urban areas – Design, Computation methods 13 | 16

Transformation models Unit-hydrograph-method

- Instantaneous Unit Hydrograph (IUH): $\Delta t \rightarrow 0$
- Transform Unit Hydrograph (TUH): $\Delta t > 0$

Assume linear precipitation-runoff process and use net precipitation $\begin{aligned} Q(t) &= \sum_{i=1}^{n} h \big\{ \Delta t, t - (i-1)\Delta t \big\} I_i \Delta t \\ h \{\Delta t, t - (i-1)\Delta t \} &= \mathsf{TUH} \text{ at time } t - (i-1)\Delta t \\ I_i &= \mathsf{net} \text{ precipitation intensity at } i^{\mathsf{th}} \text{ time step } \Delta t \end{aligned}$

Transformation models Unit-hydrograph-method

UH estimations:

Matrix inversion

TUDelft

- Quadratic programming
- Deterministic modelling
 - Linear reservoir

$$q = \frac{1}{k}S \qquad \& \quad \frac{dS}{dt} = p - q \qquad \& \qquad q(0) = 0$$
$$q = p\{1 - \exp(-t/k)\}$$
$$q = Q_0 \exp(-(t - T)/k) \qquad \text{if } q = Q_0 \text{ at } t = T$$
Instantaneous unit inflow t=0 and
$$Q_0 = \frac{S_0}{K} = \frac{1}{K}$$

IUH = h(
$$\Delta t$$
 = 0, t) = $\left(\frac{1}{k}\right)$ exp(-t/k)

Transformation models Unit-hydrograph-method

Nash model

cascade of n identical linear reservoirs with constant k

$$q_{i} = \frac{1}{k} \int_{0}^{t} e^{\frac{t-\tau}{k}} q_{i-1}(\tau) d\tau \qquad \text{with } q_{0}(t) = p(t)$$
$$q_{1} = \frac{1}{k} \exp\left(\frac{-t}{k}\right) \rightarrow \qquad q_{2} = \left(\frac{t}{k^{2}}\right) \exp\left(\frac{-t}{k}\right) \rightarrow \qquad \text{etc}$$

IUH:

$$h\left\{\Delta t = 0, t\right\} = \frac{1}{k\Gamma(n)} \left(\frac{t}{k}\right)^{n-1} \exp\left(\frac{t}{k}\right)$$
 with $\Gamma(n)$ being a gamma-fuction

