Water management in urban areas Processes 1

Dr. ir. Frans H.M. van de Ven 12-2-2009

Content

- Urban climate
- Urban water balance
- Precipitation
- Evapotranspiration
- Groundwater
- Subsidence

Urban climate The external driving force

- Precipitation
- Radiation
- Wind
- Temperature
- etc...

Urban climate

Deviation with the city's surrounding

- Higher concentrations of various aerosols
 - Clouds / fog
 - Dust particles
 - Air pollution / smog
- Urban heat island
 - Low albedo
 - Limited evapotranspiration
 - Large heat capacity of buildings
 - Waste heat of energy usage
- Effects are relative to agglomeration size

- \rightarrow More heavy showers
 - Less hours of sunshine

Urban climate

Urbanization effect on heavy showers

Source: Prak, Krayenhoff van de Leur, 1979

Water management in urban areas – Processes 1 5 | 48

Water balance A hydrological analysis

Water management in urban areas – Processes 1 6 | 48

A hydrological analysis

Water management in urban areas – Processes 1 7 | 48

Example: Lelystad

Source: Van de Ven, Voortman, 1985. Water balance of two experimental basins in Lelystad, 1968-1980

	resident	ial area	parking lot		
	mm	%	mm	%	
Precipitation (P)	698	87	739	88	
Seepage (K)	108	13	101	12	
Total inflow	806	100	838	100	
Discharge stormwater sewerage (Q _r)	159	20	376	45	
Subsurface drainage discharge (Q _d)	320	40	337	40	
Evapo-transpiration unpaved area (E _a)	214	27			
Evaporation paved surface (E _c)	75	9	112	13	
Evaporation solitary trees (E _b)	27	3	27	3	
Change in storage (Δ S)	11	1	5	1	

Example: Lelystad

Source: Van de Ven, Voortman, 1985. Monthly water balance of two experimental basins in Lelystad.

Residential area

Parking lot

9 | 48 Water management in urban areas – Processes 1

Summary

- Additional imports (drinking water, seepage)
- Limited discharge storm sewer
- Significant subsurface drainage
- Less evaporation from paved surfaces but not negligible
- Buffering behavior of unpaved soil

Source photo: www.flickr.com/creativecommons (mhaithaca)

Water management in urban areas – Processes 1 11 | 48

Precipitation Monitoring methods

- Cumulative rain gauge measurements
- Continuous registering rain gauges
 - Pen recorder (fully continuous but analog!)
 - Data logger, fixed time interval
 - Data logger, event-sense
- Radar (wet vs. dry spots)

Precipitation **Monitoring factors**

- Internal errors Evaporation, splashing...
- Installation errors Wind influence: Elevation, obstacles Vandalism precautions
- Network density Spatial variability, purpose
- Frequency Studied phenomenon

Source graph: Pfeiff, 1971. Relation between amount of precipitation caught and wind velocity for a rain gauge

Water management in urban areas – Processes 1 13 | 48

Annual distribution

Source: Buishand, Velds, 1980. Precipitation distribution of the Netherlands

Water management in urban areas – Processes 1 14 | 48

Precipitation Seasonal distribution Source: Buishand, Velds, 1980. Precipitation distribution of the Netherlands winter summer 500 mm 500 mm 450 475

15 | 48

Heavy rainstorms

Source: Witter, 1984

Deviation (%) from average number of days per year with > 20 mm precipitation

Water management in urban areas – Processes 1 16 | 48

Extreme precipitation intensities

- Extremes often determine the design situation
- Amount at a single location
 - Rainfall *depth-duration-frequency* curves (DDF) Rainfall *intensity-duration-frequency* curves (IDF)

Water management in urban areas – Processes 1 17 | 48

Extreme precipitation intensities

Area size effects

- x_q = maximum precipitation in a certain time interval within a year for the area
- x_{pj} = maximum precipitation in a certain time interval within a year for point j

Water management in urban areas – Processes 1 18 | 48

Intention duration patterns

Source: STOWA, 2004. Various observed patterns of precipitation for a 24 hour period.

Water management in urban areas – Processes 1 19 | 48

Intention duration patterns

Source: Van de Ven, 1983

Rainstorms with

- a peak at the start
- a peak at the end
- a less pronounced peak
- two peaks at 5% and 50% of their duration

Evapotranspiration

Source photo: www.flickr.com/creativecommons

Water management in urban areas – Processes 1 21 | 48

Evapotranspiration Radiation

•
$$Q^* = K + \Lambda = K \checkmark - K \uparrow + \Lambda \checkmark - \Lambda \uparrow$$

- Q^* = net radiation [W·m⁻²]
- $\Lambda = \text{long wave component consisting of an incoming and outgoing component [W·m⁻²]}$

•
$$K = (1 - r) K \downarrow$$

r = reflection coefficient (albedo) [%]

•
$$\Lambda \uparrow = \sigma T_0^4$$

- σ = Stephan-Boltzman constant 5.67 · 10⁻⁸ [W·m⁻²·K⁻⁴]
- T_0 = surface temperature [K]
- $\Lambda \downarrow$ empirical function of vapour pressure and clouds

Evapotranspiration Energy balance

 $Q^* = G + LE + H$

G = heat absorbed by the earth's surface $[W \cdot m^{-2}]$

L is evaporation heat $\approx 2.5 \cdot 10^6 \text{ [J} \text{ kg}^{-1}\text{]}$

E is vapour transport [kg·m⁻²·s⁻¹]

H = *tangible heat* transferred to the atmosphere $[W \cdot m^{-2}]$

Evapotranspiration Methods

- Penman: E₀ (international standard)
 - Open water evaporation
 - Heat storage in the water ignored
 - Input: Radiation / Hours of sunshine Air temperature Wind (function) Relative humidity
- Makking: E_r (KNMI)
 - Reference crop evaporation (well watered grass)
 - Input: Global radiation flow density
 - Air temperature

Evapotranspiration Unpaved surfaces

- Wet conditions
 - Similar as for open water
 - Albedo 10 25 %
- Dry, well watered vegetated conditions
 - Potential evaporation ($E_{pot} = g E_0 = fE_r$)
 - Crop factors depending on type and state of the vegetation (<1)
 - Actual evaporation \leq potential evaporation $(E_{act} \leq E_{pot})$

Evapotranspiration Unpaved surfaces

- Actual evaporation (Thornthwaite & Mather) $S = S_0 e^{-APWL/S_0}$ S = actual moisture content in root zone [mm] $S_0 = moisture content in root zone at start of the dry season [mm]$ $APWL = Accumulated Potential Water Loss (\SigmaE_{pot} t) [mm]$
 - $$\begin{split} E_{act} &= P \Delta S & \text{if } P < E_{pot} \\ E_{act} &= E_{pot} & \text{if } P > E_{pot} \\ E_{act} &= actual \text{ evaporation} \\ P &= precipitation \\ \Delta S &= S S_0 \end{split}$$

Evapotranspiration

Unpaved surfaces

Source: Van der Molen, 1972

Example: water balance for a meadow in the Netherlands

•
$$Q = P - E_{act} - \Delta S$$

•
$$PE = E_{pot} = 08 \cdot E_0$$

• all parameters in mm

		J	F	Μ	А	М	J	J	А	S	0	Ν	D	Year
Precipitation	Р	69	52	44	49	52	57	78	89	71	72	70	64	767
Pot. Evap.	PE	5	14	33	63	88	101	98	82'	52	25	9	3	573
	P-PE	64	38	11	-14	-36	-44	-20	+7	19	47	61	61	194
	APWL				14	50	94	114					-	
	S	100	100	100	87	61	39	32	39	58	100	100	100	-
	$(S_0 = 100)$													
	ΔS	0	0	0	-13	-26	-22	-7	+7	+19	+42	0	0	-
Act. Evap.	AE	5	14	33	62	78	79	85	82	52	25	9	3	527
Runoff	Q	64	38	11	0	0	0	0	0	0	5	61	61	240

Evapotranspiration Paved surfaces

- Limited knowledge
- No transpiration
- Extra heat capacity of the pavement / roof tiles
 - Example: asphalt of 55°C on surface of 40°C

Time	H _s	Evaporation fl	Total evaporation			
(h)	(W/m²)	(x 10 ⁻⁵ mm/s)	(mm/d)	(mm)		
5/60	1500	43	37	0.27		
30/60	620	18	15	0.69		
1	440	13	11	1.0		
2	310	8.9	7.7	1.4		

Source table: Van de Ven, 1985. Computed heat flow and evaporation with a rainstorm on a sunny summer day.

Evapotranspiration

Paved surfaces

Source: Grimmond and Oke, 1999. Relation between relative evaporation and vegetated fraction.

Considerable flux even with completely paved area

- Q_E = latent heat
- Q_E / Q^* = heat fraction used for evaporation

Water management in urban areas – Processes 1 29 | 48

Photo: Groundwater level rise up to the crawlspace

Water management in urban areas – Processes 1 30 | 48

Groundwater Groundwater balance

- Infiltration
 - Unpaved surface
 - Semi-pervious pavement
 - Stormwater infiltration facilities
- Seepage
 - Deep semi-confined aquifers
- Leakage
 - Permeable sewer system
 - Broken drinking water mains

- Evapotranspiration
 - Surface evaporation
 - Plant uptake and transpiration
- Drainage
 - Natural discharge
 - Groundwater drainage system
- Extractions
 - Drinking water
 - Irrigation
 - Industrial purpose

Groundwater Unsaturated zone

- Air, water and soil particles
- Root zone
- $P = z + \phi_s$
 - P = potential [m]
 - z = elevation [m]
 - ϕ_s = suction pressure [m]

• pF =
$${}^{10}\log (\phi_s \cdot 100)$$

Unsaturated zone moisture

33 | 48 Water management in urban areas – Processes 1

Groundwater Unsaturated zone flow

• Flow from high to low potential:

$$v = -K(\varphi_s)\frac{dp}{dz} = K(\varphi_s)\frac{dp}{dh}$$

- v = flow velocity [m's⁻¹]
- $K(\phi_s)$ = permeability of the unsaturated soil [m's⁻¹]
 - = elevation compared to reference level [m]
- h = elevation compared to ground level [m]

• Z

Unsaturated zone potential

Unsaturated zone potential

Unsaturated zone potential

Groundwater level and discharge

Source: Unknown. Progress of groundwater levels and drain discharges of two areas in Lelystad (1970-1980).

Water management in urban areas – Processes 1 38 | 48

Groundwater Saturated zone flow

- Based on Darcy: v = -K·i
- q-h relations:
 - Donnan
 - Hooghoudt
 - Ernst
 - Glover-Dumm

Donnan

- Horizontal flow with small bulge (D>>h)
- Constant precipitation (R)

$$q = (= R) = \frac{8.K_1.D.h + 4.K_2.h^2}{L^2}$$

Groundwater Hooghoudt

Groundwater Ernst

- Pressure losses
 - Vertical
 - Horizontal
 - Radial
 - Entry
- Geometry-factor a

$$h = q \frac{D_v}{K_v} + q \frac{L^2}{8\sum_i (KD)_i} + q \frac{L}{\pi K_r} \ln \frac{aD_0}{u} + qLW_i$$

Photo: Subsidence of more than a meter around dwellings in Schiedam, 2001.

Water management in urban areas – Processes 1 43 | 48

Load-subsidence

$$\frac{\Delta z}{z} = \frac{1}{C} \ln \frac{p_2'}{p_1'} \qquad \text{(Terzaghi)}$$

- z = thickness [m]
- $\Delta z = \text{compression} [m]$
- p'_1 = original effective stress [kN·m⁻²]
- p'_2 = effective stress after loading [kN·m⁻²]
- C = compression constant [-]

C-values:

- sand 20 200
- loam and clay 10 20
- peat 2 7

Subsidence Hydro-dynamic period

Consolidation theory (volume change by outflow)

Water management in urban areas – Processes 1 45 | 48

Hydro-dynamic period

• Terzaghi:
$$t_e = \frac{m_v \cdot \gamma_w \cdot z^2}{2K}$$

- $m_v = \text{compression coefficient } [m^2/kN]$
- γ_w = density of water [kN·m⁻³]
- K = permeability of the soil [m·s⁻¹]

Hydro-dynamic period

• Terzaghi:
$$t_e = \frac{m_v \cdot \gamma_w \cdot z^2}{2K}$$

- m_v = compression coefficient [m²/kN]
- γ_w = density of water [kN·m⁻³]
- K = permeability of the soil $[m \cdot s^{-1}]$

• Terzaghi + Keverling-Buisman secondary effect = Koppejan:

$$\Delta z = z \left(\frac{1}{C_{\rho}} + \frac{1}{C_{s}} \log \frac{t}{t_{o}} \right) \ln \frac{p_{2}'}{p_{1}'}$$

- C_p = primary compression constant
- C_s = secondary compression constant
- t = loading time (t_0 = unit of time)

Acceleration

Decrease discharge distance with vertical drains

• Kjellmann:
$$t_e = \frac{m_v \cdot \gamma_w \cdot D^2}{8 \cdot K_h} \cdot \left[ln \left(\frac{D}{d} \right) - \frac{3}{4} \right] \cdot 5$$

- D = centre to centre distance of drains [m]
- d = diameter of drains [m]
- K_h = horizontal permeability [m·s⁻¹]

