Water management in urban areas Processes 2

Dr. ir. Frans H.M. van de Ven 25-5-2009

Content

- Stormwater runoff
- Hydraulic processes in surface water
- Water quality processes
- Exchange with the surroundings

Source photo: <u>http://blogs.oregonstate.edu/h2onc/</u> (R.M. Emanuel)

Water management in urban areas – Processes 2 3 | 89

Subprocesses

- Precipitation losses
 - Amount which doesn't run off via the sewer system
- Retardation
 - Conversion, delay and flatting of inflow
- Discharge via groundwater
- Discharge via main drainage system

Losses at unpaved terrain

- Interception
 - Horton: $I_i = a + b P^c$

Crop	а	b	С
Orchard	0.04	0.18	1.0
Ash (in forest)	0.02	0.18	1.0
Beech (in forest)	0.04	0.18	1.0
Oak (in forest)	0.05	0.18	1.0
Maple (in forest)	0.04	0.18	1.0
Willow (in forest)	0.02	0.40	1.0
Pine forest	0.05	0.20	0.5

Source: Kibler, 1982. Interception constants according to Horton

Losses at unpaved terrain

- Interception
 - Horton: $I_i = a + b'P^c$
- Infiltration

TUDelft

• Green and Ampt: $f = K \frac{H_0 + H_c + L}{L} = \theta_f \frac{dL}{dt}$ $\theta_f = \theta_v - \theta_0$

Crop	а	b	с
Orchard	0.04	0.18	1.0
Ash (in forest)	0.02	0.18	1.0
Beech (in forest)	0.04	0.18	1.0
Oak (in forest)	0.05	0.18	1.0
Maple (in forest)	0.04	0.18	1.0
Willow (in forest)	0.02	0.40	1.0
Pine forest	0.05	0.20	0.5

Source: Kibler, 1982. Interception constants according to Horton

Water management in urban areas – Processes 2 6 | 89

Losses at unpaved terrain

- Infiltration intensity's
 - Horton: $f = f_e + (f_0 f_e)e^{-kt}$
 - f_e and f_0 are begin and end infiltration-intensity

Final infiltration rate (mm/hr)

TUDelft

Water management in urban areas – Processes 2 7 | 89

Losses at unpaved terrain

• Depression storage

Nature of surface	Storage (mm)	Remarks	Source
Lawn	5 - 12	Recommended for design: 8 mm	Kibler, 1982
green belt, open field	5 - 15	Recommended for design: 10 mm	
general (ASCE)	6		
bare soil, mowed lawn	0.6-2.5		Pecher, 1969
vegetated soils	2.5-4		
General	0.645 / (I+0.084)	I = gradient of the ground (1:x)	Pfeiff, 1971

Losses at unpaved terrain

• Depression storage

Nature of surface	Storage (mm)	Remarks	Source
Lawn	5 - 12	Recommended for design: 8 mm	Kibler, 1982
green belt, open field	5 - 15	Recommended for design: 10 mm	
general (ASCE)	6		
bare soil, mowed lawn	0.6-2.5		Pecher, 1969
vegetated soils	2.5-4		
General	0.645 / (I+0.084)	I = gradient of the ground (1:x)	Pfeiff, 1971

Evapotranspiration

Energy balance

Losses at paved terrain

- Moisturizing losses
 - Hygroscopic water, adhesion onto a material
 - Relative small amount; Rough cement concrete 0.55 mm asphalt with split 0.52 mm cement concrete 0.35 mm smooth asphalt 0.18 mm
- Depression storage
 - Dependent on condition of the pavement
 Pavement
 Highway
 Flat roofs
 PFC
 Pmm

Losses at paved terrain

- Infiltration
 - semi impervious pavement (bricks / tiles)
 - porous pavement (asphalt with cracks)

		infiltration capacity (mm/h)			Number of experiments	
Type of pavement	(dimensions in m)	Source	Median	min.	max.	
concrete brick	(0.22x0.11x0.08)	BB	32	10	352	21
concrete brick	(0.20x0.10x0.07)	DS	14	7	24	9
concrete brick	(0.20x0.09x0.065)	BB	34	8	300	13
bricks	(0.20x0.20x0.08)	DS	9	6	15	9
Tiles	(0.30x0.30x0.04)	BB	16	1	254	15
Tiles	(0.50x0.50x0.06)	DS	10	7	16	4
asphalt		DS+BB	0		0	4

Source: Van de Ven, 1985. Average infiltration capacity according to Bebelaar and Bakker (BB) and Van Dam and Schotkamp (DS)

Losses at paved terrain

- Cumulative infiltration
 - Hillel and Gardner: $I_{cum} = \sqrt{at + b} c$
 - $a = 2 \cdot K \cdot H_c \cdot \theta_f$
 - $b = (K \cdot R_b \cdot \theta_f)^2$
 - R_b= resistance to the crust [T]

Losses at paved terrain

- Cumulative infiltration
 - Hillel and Gardner: $I_{cum} = \sqrt{at + b} c$
 - $a = 2 \cdot K \cdot H_c \cdot \theta_f$
 - $b = (K \cdot R_b \cdot \theta_f)^2$
 - R_b= resistance to the crust [T]
- Evaporation
 - Energy balance

Runoff coefficients

• $C = \frac{\text{total runoff via the sewerage (excluding the base flow)}}{\text{total precipitation on directly connected paved area (DCPA)}}$

Runoff coefficients

- $C = \frac{\text{total runoff via the sewerage (excluding the base flow)}}{\text{total precipitation on directly connected paved area (DCPA)}}$
- $C_p = \frac{\text{maximum runoff intensity}}{\text{maximum precipitation intensity}} \text{during a rainstorm}$

Runoff coefficients

- $C = \frac{\text{total runoff via the sewerage (excluding the base flow)}}{\text{total precipitation on directly connected paved area (DCPA)}}$
- $C_p = \frac{\text{maximum runoff intensity}}{\text{maximum precipitation intensity}} \text{during a rainstorm}$

• $C_t = \frac{\text{total runoff via the sewerage (excluding the base flow)}}{\text{total precipitation on entire drainage basin}}$

Runoff coefficients

- C depends on losses:
 - Evaporation
 - Infiltration
 - Storage
 - Inflow from/ discharge to unpaved surface (C > 1 !!)
- Variable characteristics (each rainstorm):
 - Degree of filling of the initial storage
 - Moisture content of the soil
 - Temperature of the pavement
 - Etc...
- (semi-)Consistent characteristics:
 - Percentage of pavement
 - Type of pavement
 - Vegetation of unpaved area
 - Etc...

Water management in urban areas – Processes 2 17 | 89

Runoff coefficients

Total

Source: Pecher, 1969.

TUDelft

Course of precipitation losses and runoff on a imaginary surface. 50% paved with asphalt and 50% concrete bricks during 0.5 mm/min rainfall.

Water management in urban areas – Processes 2 18 | 89

Runoff coefficients

Source: Van de Ven, 1985.

Probability density of C for three areas in Lelystad;

- Rainstorms with runoff > 1 mm
- Rainstorms with runoff > 5 mm

Runoff coefficients

Source: Pecher, 1969.

Water management in urban areas – Processes 2 20 89

Surface storage during a rainstorm

Water management in urban areas – Processes 2 21 | 89

The runoff process theory

- Thin layer surface flow (directly fed by precipitation)
- Gully flow (water gathers in gutters)

- Long wave with peripheral inflow
 - Mass balance:
 - Momentum balance:

 $\frac{\partial a}{\partial t} + u \frac{\partial a}{\partial s} + a \frac{\partial u}{\partial s} = \frac{I}{b}$ $a \frac{\partial u}{\partial t} + u \frac{\partial a}{\partial t} + 2au \frac{\partial u}{\partial s} + (ga + u^2) \frac{\partial a}{\partial s} = v \frac{I}{b} - \frac{\tau_b}{\rho} + ga\theta$

The runoff process theory

- Thin layer surface flow (directly fed by precipitation)
- Gully flow (water gathers in gutters)

- Long wave with peripheral inflow
 - Mass balance:
 - Momentum balance:
 - Modified into:

 $\frac{\partial a}{\partial t} + u \frac{\partial a}{\partial s} + a \frac{\partial u}{\partial s} = \frac{I}{b}$ $a \frac{\partial u}{\partial t} + u \frac{\partial a}{\partial t} + 2au \frac{\partial u}{\partial s} + (ga + u^2) \frac{\partial a}{\partial s} = v \frac{I}{b} - \frac{\tau_b}{\rho} + ga\theta$ $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial s} + g \frac{\partial a}{\partial s} = \frac{v - u}{a} \frac{I}{b} - \frac{\tau_b}{\rho a} + g\theta$

Stormwater runoff The runoff process theory

Laminar surface flow

$$\frac{\tau_b}{\rho a} = 3v \frac{u}{a^2}$$

 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial s} + g \frac{\partial a}{\partial s} = \frac{v - u}{a} \frac{t}{b} - \frac{\tau_b}{\rho a} + g\theta$

Stormwater runoff The runoff process theory

Laminar surface flow

• friction:
$$\frac{\tau_b}{\rho a} = 3v \frac{u}{a^2}$$

• Steady state and neglecting lower order terms

 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial s} + g \frac{\partial a}{\partial s} = \frac{v - u}{a} \frac{t}{b} - \frac{\tau_b}{\rho a} + g\theta$

Stormwater runoff The runoff process theory

Laminar surface flow

friction:
$$\frac{\tau_b}{\rho a} = 3\nu \frac{u}{a^2}$$

- Steady state and neglecting lower order terms
- Integrated over rainstorm duration (L)

• $\frac{q_L}{L} = \alpha a^3 [LT^{-1}]$ with $\alpha = \frac{1}{3} \frac{g}{v} \frac{\theta}{L}$

Temperature [°C]	Kinematic viscosity (v) [m2.s ⁻¹]		
0	1.79		
5	1.52		
10	1.31		
15	1.15		
20	1.01		
25	0.90		

The runoff process in practice

- Unit hydrograph
 - linearized runoff process based on observations

The runoff process in practice

- Unit hydrograph
 - linearized runoff process based on observations

Total runoff

TUDelft

 convolution integral of precipitation times unit hydrograph

$$q(t) = \int_{0}^{t} p(t) \cdot h(t-\tau) d\tau$$

Water management in urban areas – Processes 2 28 | 89

The runoff process in practice

Source: Van de Ven, 1982.

- Retardation
 - Sewer
 - Rural drainage
 - Urban drainage

Hydraulic processes in surface water

Source photo: www.flickr.com/creativecommons

Water management in urban areas – Processes 2 30 | 89

Hydraulic processes in surface water Classification

- Time dependence
 - Steady (Stationary)
 - Non-steady (Non-stationary)
- Location dependence
 - Uniform
 - Non-uniform
- Turbulence (Reynold's number $Re = \frac{u \cdot R}{v}$)
 - Laminar (Re < 400)
 - Turbulent (Re > 2000)

Hydraulic processes in surface water Shallow water equations (De Saint Venant)

Continuity

Momentum

$$B\frac{\partial t}{\partial t} + \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s\left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$$

- Q = Flow
- x = location
- A_s = cross section of the flow

да дО

- B = surface width
- a = water depth
- R = hydraulic radius
- Z_0 = level of the flow bed
 - = time

t

β

- g = acceleration of gravity
- W = wind velocity
 - = factor
- ρ = fluid density

Hydraulic processes in surface water Simplified shallow water equations

• Momentum equation:
$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s \left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$$

- $\frac{\partial v}{\partial t} = 0$ $\frac{\partial v}{\partial r} = 0$ Steady
- Uniform
- Parallel water level and flow bed
- No wind effects

Hydraulic processes in surface water Simplified shallow water equations

• Momentum equation: $\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s\left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$

• Steady
$$\frac{\partial v}{\partial t} = 0$$

- Uniform $\frac{\partial v}{\partial x} = 0$
- Parallel water level and flow bed
- No wind effects

Transformed momentum equation:

$$gA_s \frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2 A_s R} = 0$$

• with $\frac{\partial Z_0}{\partial x} = I$ Chezy Manning $Q = A_s C \sqrt{RI}$ $Q = A_s K_m R^{2/3} I^{1/2}$

Hydraulic processes in surface water Friction dominated shallow water equations

Momentum equation:

Steady

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s \left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$$

• Non-uniform $\frac{\partial v}{\partial x} \neq 0$ ($\frac{v}{x} \approx 0$ back water curve)

 $\frac{\partial v}{\partial t} = 0$

No wind effects

Hydraulic processes in surface water Friction dominated shallow water equations

• Momentum equation:

Steady

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s \left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho}$$

 $\alpha^2 \mathbf{n}$

- Non-uniform $\frac{\partial v}{\partial x} \neq 0$ ($\frac{v}{r} \equiv 0$ back water curve)
- No wind effects

Transformed momentum equation:

 $\frac{\partial v}{\partial t} = 0$

• with
$$\frac{\partial Z_0}{\partial x} = I_b$$
 hydraulic gradient:

$$gA_{s}\left(1-\frac{Q^{2}B_{s}}{gA_{s}^{3}}\right)\frac{\partial a}{\partial x}+gA_{s}\frac{\partial Z_{0}}{\partial x}+\frac{gQ|Q|}{C^{2}A_{s}R}=0$$
$$\frac{da}{dx}=I_{b}\frac{1-\frac{Q^{2}}{C^{2}A_{s}^{2}RI_{b}}}{1-\frac{v^{2}}{ga}}$$

= 0

Hydraulic processes in surface water Friction dominated shallow water equations

Momentum equation:

Steady

equation:

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s\left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial t} + gA_s\frac{\partial Z_0}{\partial t} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$$

$$\frac{\partial V}{\partial t} = 0$$

- Non-uniform $\frac{\partial v}{\partial x} \neq 0$ ($\frac{v}{x} \approx 0$ back water curve)
- No wind effects

Transformed momentum equation:

• with
$$\frac{\partial Z_0}{\partial x} = I_b$$
 hydraulic gradient:

• with
$$Fr = \frac{v}{\sqrt{ga}}$$
 (Froude number)

 $I_b = bottom gradient$

 $I_c = friction gradient$

TUDelft

Hydraulic processes in surface water Shallow water equations for tranquil flow

Momentum equation:

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s \left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho}$$

= 0

• Non-uniform $\frac{\partial v}{\partial x} \neq 0$

• Non-steady $\frac{\partial v}{\partial t} \neq 0$

- No wind effects
- Tranquil flow $Fr^2 = \frac{v^2}{ga} \approx 0 \implies 1 \frac{v^2}{ga} = 1 \frac{Q^2 B}{gA_s^3} \approx 1$

Hydraulic processes in surface water Shallow water equations for tranquil flow

- Momentum equation:
 - Non-steady $\frac{\partial v}{\partial t} \neq 0$

$$\frac{\partial Q}{\partial t} - \frac{2QB}{A_s}\frac{\partial a}{\partial t} + gA_s \left(1 - \frac{Q^2B}{gA_s^3}\right)\frac{\partial a}{\partial x} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} - \frac{B\beta W|Wx|}{\rho} = 0$$

- Non-uniform $\frac{\partial v}{\partial x} \neq 0$
- No wind effects

• Tranquil flow
$$Fr^2 = \frac{v^2}{ga} \approx 0 \implies 1 - \frac{v^2}{ga} = 1 - \frac{Q^2 B}{gA_s^3} \approx 1$$

Transformed momentum equation: $\frac{\partial Q}{\partial t} - 2\frac{QB}{A_s}\frac{\partial a}{\partial t} + gA_s\frac{\partial a}{\partial t} + gA_s\frac{\partial Z_0}{\partial x} + \frac{gQ|Q|}{C^2A_sR} = 0$

Hydraulic processes in surface water Large water bodies

• Wind setup

$$z = \alpha \frac{W^2}{h} \cdot I \cdot \cos \phi$$

- z = wind setup
- α = constant (0.2 0.4 · 10⁻⁶) [-]
- W = wind velocity [m·s⁻¹]
- ϕ = angle between wind direction and fetch length
 - = fetch length [m]
- h = water depth [m]

Hydraulic processes in surface water Large water bodies

- Waves (empirical)
 - h average water depth [m]
 - I fetch length [km]
 - H wave height [m]
 - λ wave length [m]
- Wave breaking
 - breaking at h = 1.3 H 2 H
 - proper bank structure design

Source photo: www.rijnland.net (Hoogheemraadschap Rijnland, 2008. Maarten van der Weijden swimming in the canals of Leiden)

Water management in urban areas – Processes 2 42 | 89

Sources of pollution

Source photo's: www.flickr.com/creativecommons

Water management in urban areas – Processes 2 43 | 89

Water quality processes Wet deposition

- Precipitation quality
 National monitoring network

 monthly data
 sensitive to errors
- Unknown urbanization effects

		DEPOSITION		
		CONCENTRATIO	ON	molecular
Parameter	mol.l ⁻¹	mol. m ⁻² / 24hrs	mol.ha ⁻¹ /year	weight
Acid	4.57*	60.0 x 10 ⁻⁶	220	
Calcium	37.5 x 10 ⁻⁶	50.1 x 10 ⁻⁶	183	40.1
Magnesium	18.9 x 10 ⁻⁶	30.7 x 10 ⁻⁶	112	24.3
Sodium	121 x 10-6	219 x 10 ⁻⁶	800	23.0
Ammonium	171 x 10-6	256 x 10 ⁻⁶	934	14.0
Chloride	128 x 10-6	260 x 10 ⁻⁶	950	35.5
Fluoride	3.7 x 10-6	8.0 x 10 ⁻⁶	30	19.0
Nitrate	89 x 10-6	126 x 10 ⁻⁶	14	
Orthophosphate	4.9 x 10-6	6.7 x 10 ⁻⁶	24	30.9
Sulphate	100 x 10 ⁻⁶	126 x 10 ⁻⁶	460	96.1
Arsenic	13 x 10 ⁻⁹	21 x 10 ⁻⁹	77 x 10-3	74.9
Cadmium	3.97 x 10 ⁻⁹	6.54 x 10 ⁻⁹	23.9 x 10-	112.4
Chrome	10 x 10 ⁻⁹	20 x 10 ⁻⁹	75 x 10-	52.0
Copper	200 x 10 ⁻⁹	240 x 10 ⁻⁹	0.88	63.5
Iron	1.05 x 10 ⁻⁶	1.36 x 10 ⁻⁶	4.96	55.8
Manganese	0.60 x 10 ⁻⁶	1.12 x 10 ⁻⁶	4.09	54.9
Nickel	33 x 10-9	50 x 10 ⁻⁹	180 x 10-3	58.7
Lead	87 x 10 ⁻⁹	129 x 10 ⁻⁹	471 x 10-3	207.2
Zinc	1.30 x 10 ⁻⁶	1.65 x 10 ⁻⁶	6.02	65.4

* pH-units

Source:Van der Meent, 1984. Average quality of precipitation in the Netherlands. Medians of the 27 local average concentrations and depositions of matter; data July 1978 – December 1982.

Water quality processes Wet deposition

Source: Van der Meent, 1984. Deposition of various matter from observed precipitation quality.

×

Water management in urban areas – Processes 2 45 | 89

Atmospheric deposition

Source: Ellis, 1985. Average concentrations of atmospheric depositions in urban areas

• Urban imports

variable	total deposition (gm ⁻² y ⁻¹)	wet deposition (mgL ⁻¹)	melt water (mgL ⁻¹)	% contribution to import
Suspended matter	8.4-36.2	5-70	263 - 690	10 - 25
COD	0.44-31.6	8-27	15 - 25	15 -30
SO_4	6-15	4.8-46.1		31 -100
P-tot	0.021-0.024	0.02-0.37		17-140
NO ₃ -N	1.8-8.2	0.5-4.4	4.1 - 5.7	30-94
Pb	0.04-4.0	0.03-0.12	0.3 - 0.4	15-54
Zn	0.1-1.3	0.05-0.38	0.35-0.41	20-62

Water quality processes Corrosion leaching

- Corrosion of extensively used building material
- Major heavy metal source

Metal	leaching intensity (g.m ⁻² .yr ⁻¹)	concentration in runoff (µg.l ⁻¹)
Zinc	0.6 - 7	17,790; 2,135-4,981; 2,900
Copper	0.7 - 1.7	11,000; 6,700; 1,198
Lead	5	$310^*;200^*$

* roof with parts of lead Source: Teunisse, Wagemaker, 2000.

- Toxic levels (industrial waste water)
- Environmental protection versus cultural heritage

Water quality processes Traffic pollution

- Exhaust
- Wearing of tires
- Wearing of clutch plates
- Leakage of oil

Variable	mg.axle	kg.km ⁻¹ .yr ⁻¹	
	RIZA	v.d. Ven	v.d. Ven
Solid material < 3.35 mm	671	350	408
Org. solid mat. < 3.35 mm	34.1	118	137
Oil and grease	4.3	14.1	16.4
Rubber	3.5	-	-
Pb	7.9	1.22	1.41
Cr	0.052	0.036	0.042
Cu	0.080	0.174	0.203
Ni	0.12	0.036	0.041
Zn	0.99	0.88	1.02
Cd	0.0087	0.006	0.007
COD	36.1	276	321
BOD_5^{20}	1.5	18	21

Source: RIZA, 1980; Van de Ven, Oldenkamp, 1987

Water quality processes Pesticides

Source: TNO, 2002.

Water management in urban areas – Processes 2 49 | 89

Water quality processes Stormwater runoff quality

1. Accumulated waste washed into sewer during a shower

Water management in urban areas – Processes 2 50 | 89

Stormwater runoff quality

Source: Ellis, 1985.

			A	verage	conce	ntration				1	Averag	e load	l	
				-	(mg.1)						(kg.ha	$^{-1}.yr^{-1}$)		
Variable	Tot.	org.	BOD	COD	NH_4	Pb	PAH ¹⁾	E.Coli ²⁾	tot.	org.	BOD	COD	NH_4	Pb
	susp	susp					B(a)P		susp	susp				
Sewerage														
type														
Rainwater	21	26	7	33	0.2	0.03	29	10^{2}	347	90	35	22	1.2	0.09
sewerage	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	582	149	22	265	4.6	3.1	200	10^{4}	2340	127	172	703	25.1	1.91
Discharge	28	18	12	128	0.02	0.15	365	10	121	45	90	181	0.8	0.65
from	-	-	-	-	-	-	-	-	-	-	-	-	-	-
highway	1278	86	32	171	2.1	2.9	60000	10^{3}	6289	851	172	3865	6.1	13.0
Roof	12.3	40	2.8	57.9	0.4	0.001	10^{2}							
discharge	-	-	-	-	-	-								
	216	88	8.1	80.6	3.8	0.030								
Water in	15	-	6.8	25	0.7	0.06	-	10						
inlet	-		-	-	-	-		-						
	840		241	109	1.39	0.85		10^{2}						
r.w.a.	112	28	7	37	0.3	0.09	-	10	620	-	5	22	-	0.06
Residential	-	-	-	-	-	-		-	-		-	-		-
area	1104	124	56	120	3.3	0.44		10^{3}	2300		76.8	761		1.91
r.w.a.	230	75	5	74	0.03	0.1		10^{2}	50		43	1000		0.17
Residential	-	-	-	-	-	-		-	-		-	-		-
area	1894	85	7	160	5.1	0.4		10^{4}	840		87	1029		6.84
r.w.a light	45	35	8	40	0.2	0.6		400						2.2
Industrial	-	-	-	-	-	-		-						-
areas	375	72	12	70	1.1	1.2		1700						7.0

Water quality processes Stormwater runoff quality

- 1. Accumulated waste washed into sewer during a shower
- 2. Characteristics of the location determine the runoff quality

Water management in urban areas – Processes 2 52 | 89

Variable	Units	General residential areas	Individual houses ⁵	commercial areas ¹	Roads ³	Main road ⁴	Two residential areas ⁶
Faecal coli	MPN/100 ml	1530-132500 ²	360-13000	19.000	2400		
Faecal Streptococci	MPN/100 ml	20,000		20,000	2900	1000-4000	
BOD ₅ ²⁰	mg/l	7-13	6- 39	19	9	2-19	2.5/6.1
COD	mg/l	37-99	45-229	73-123	59	19-119	35.9/58.6
DOC	mg/l	5-21		31			
N-NH ₄	mg/l	0.15-2.5	0.16-0.75	0.03	0.13	0.51-2.5	
N-N0 ₃	mg/l	0.1-1.7	0.5 -1.4	0.2 -0.5	0.28	0.6-1.4	
N-Kjeldahl	mg/l	1.5 -3.6		0.7 -1.1	0.68	0.8 - 5.1	2.2/3.6
P-total	mg/1	0.22-1.5	0.14-0.88	0.1 -0.6	0.08	0.05-0.48	0.3/0.5
Zn	μg/l	100-320	21-250	100-600	90	124-292	86.8/282.3
Pb	μg/l	50-310	94-510	400	282	143-352	6.6/62.4
Cu	μg/l	< 6-57 ²	I-46	-	6.5	25- 62	9.2/44.4
Cr	μg/l	< 5-45 ²	3-10	-	17	< 5.0- 14.4	7.1/26.6
Cd	μg/l	< 0.5-2.9 ²	3- 57	0.9	0.7	0.9- 2.2	0.2/2.3
Suspended matter	mg/l	59-930	36-390	45-303	15	15.9-171.7	36.7/113.0
Organic susp. mat.	mg/1	33- 74					7.0-49.6
Oil	mg/l	0.54-0.98 ²					

53 | <mark>89</mark>

Water quality processes Stormwater runoff quality

- 1. Accumulated waste washed into sewer during a shower
- 2. Characteristics of the location determine the runoff quality
- 3. Precipitation intensity influences amount of pollution running off

Water management in urban areas – Processes 2 54 | 89

Stormwater runoff quality

Source: Van de Ven, 1982.

Water management in urban areas – Processes 2 55 | 89

Stormwater runoff quality

Source: Van de Ven, 1982.

Water management in urban areas – Processes 2 56 | 89

Water quality processes First flush in stormwater drainage

Water quality processes First flush in stormwater drainage

Source: Dolman, 1998.

Example: Residential area Julianapark in Amsterdam

First flush of Cl in stormwater drainage

Source: Dolman, 1998.

Water management in urban areas – Processes 2

59 | <mark>89</mark>

First flush of Zn in stormwater drainage

Source: Dolman, 1998.

Water management in urban areas – Processes 2 60 | 89

Water quality processes First flush of COD in stormwater drainage

Source: Dolman, 1998.

TUDelft

Water management in urban areas – Processes 2 61 | 89

First flush of Streptococci in stormwater drainage

Source: Dolman, 1998.

Water quality processes Ground- and drainage water quality

- Limited research
- Significant for contaminated soils (former dumps/industrial sites)

			% O ₂	Milligram per litre						
Drain	Date	рН	satur.	N-NH ₄	N-NO ₃	N-Kjeld.	BOD ₅ ²⁰	COD	P-total	CI
		6.5	0.0	1.9	0.0	1.2	0.6	19	0.1	158
4 drains	1975	7.1	35	1.5	0.25	2.2	1.6	27	0.82	326
		7.4	74	3.0	1.2	4.1	2.8	38	2.4	664
Drain	27/8/82	7.2	20	2.1	2.8	2.8	2	30	2.0	156
Drain	13/10/82			2.0	2.6	2.6	1	25	0.77	151
Cunette-drain	13/10/82	7.9	95	0.31	1.1	1.1	1	29	0.10	270

Source: Uunk, 1984. Quality values of drainage water in Lelystad

Water quality processes Combined sewer overflow (CSO)

- Combined sewer system
 - Stormwater runoff
 - Domestic waste water
 - Sewage silt
- Total load determines impact

Variable	San Fransisco ¹	Loenen/Oosterhout ²	North-Hampton ³
	1 shower	average concentration	Avconcentration
Discharge (m ² /s)	0.2-3.1		
E-Coli (faec) 10 ⁴ /ml	0.6-13		
Susp. matter mg/1	73-442	394/165	325 – 525
Org. Susp.matt. mg/1	56-264		
Grease mg/1	16.2-63.4		
COD mg/l	165-458	271/345	
BOD mg/1	41-252	34/79	50 - 160
Floating matter mg/l	0.4-2.3		
Settling matter mg/1	7-40		
N-Kj mg/l	3.9-20.0		
NH ₄ –N mg/l	2.45-10.5	2.5 –17	
tot-PO ₄ mgP/l	1.13-3.20		
SO ₄ mg/l	10-29		
CI mgll	5.5-32	10- 50	
Na mg/1	6.0-29.5		
K mg/1	1.2-6.7		
Ca mg/1	4.8-11.2		
Mg mg/l	2.4-4.9		

Source: 1) Kibler; 2) Vat, 1985/NWRW, 1986; 3) Gameson, Davidson, 1963. Range of water quality parameters from combined sewer overflow measurements.

Water management in urban areas – Processes 2

64 | 89

Surface water

- Pollution enters surface water
- Internal processes
 - Physical
 - Chemical
 - Biological
- Discharged to the surroundings

Water quality processes Surface water

Focus on processes relevant to engineering:

- Oxygen management
- Nitrogen management
- Bacteriological pollution
- Pollution absorbed to suspended matter

Water quality processes Oxygen management

- Biological aspects
 - Production through photosynthesis
 - Green plants
 - Light intensity
 - Consumption by organisms
 - Significant diurnal fluctuations
 - Oxygen deficits

Oxygen management

Chemical aspects

K

р

- Aeration (equilibrium with air)
- Saturation concentration

$$C_s = K_s \cdot p$$

solvability

- vapour pressure
- Oxygen demand
 - Sediment (SOD)
 - Degradation of organic matter (BOD)
- Stratification in deeper water bodies

Т	C _s (mg/1) O ₂					
°C	dist. water	seawater				
0	14.6	11.3				
5	12.8	10.0				
10	11.3	9.0				
15	10.2	8.1				
20	9.2	7.4				
25	8.4	6.7				
30	7.6	6.1				

- Amount of oxygen [mg] necessary to mineralize bio-chemically-oxidizable components by bacteria
- Standard determination over 5 day's at 20°C: BOD₅²⁰
- Notion of organic carbon content
- BOD²⁰₂₀ ≈ total BOD

TUDelft

Oxygen concentration after introducing a oxygen consuming load

Water management in urban areas – Processes 2 70 | 89

• Self-purification: $f_{20} = \frac{k_d}{k_b}$

f₂₀

k_d

k_h

- = self-purification at 20°C
 - = bio-chemical degradation constant
 - = re-aeration constant

• Temperature dependence: $f_T = f_{20}(1.03)^{20-T}$

	f ₂₀
Small pond	0.5 - 1.0
Large lake	1.0 - 1.5
Slowly flowing river	1.5 - 2.0
Large river	2.0 - 3.0
Fast flowing river	3.0 - 5.0
Rapid	5.0 - 25.0

temperature °C	5	10	15	20	25	30
f-value	1,58	1,35	1,16	1,00	0,86	0,74

• Self-purification: $f_{20} = \frac{k_d}{k_b}$

f₂₀

k_d

k_h

 D_0

- = self-purification at 20°C
 - = bio-chemical degradation constant
 - = re-aeration constant

• Temperature dependence: $f_T = f_{20}(1.03)^{20-T}$

ependence	• 'T -	- 120(1.0	5)			
emperature °C	5	10	15	20	25	30
-value	1,58	1,35	1,16	1,00	0,86	0,74

f₂₀ 0.5 - 1.0

1.0 - 1.5

1.5 - 2.0

2.0 - 3.0

3.0 - 5.0

5.0 - 25.0

Small pond

Large lake

Large river

Rapid

Slowly flowing river

Fast flowing river

• Maximum oxygen deficit:
$$D_m = \frac{C_0}{f} \left[f \left\{ 1 - (f-1) \frac{D_0}{C_0} \right\} \right] \frac{1}{1 - f}$$

 C_0 = initial BOD concentration including the load

initial BOD concentration including the load
 initial oxygen deficit of the water without the load

Water quality processes

Bio-chemical oxygen demand

Source: Fair et al, 1968.

Water management in urban areas – Processes 2 73 | 89

Water quality processes Nitrogen management

- Double stage nitrification process:
 - Nitrosomonas • Nitrobacter $2NH_3 + 3O_2 \rightarrow 2NO_2^- + 2H^+ + 2H_2O$ • Nitrobacter $2NO_2^- + O_2 \rightarrow 2NO_3^- + 2H^+ + 2H_2O$ $2NH_3 + 4O_2 \rightarrow 2NO_3^- + 2H^+ + 2H_2O$
- Denitrification:
 - Restricted oxygen availability:

$$2H^+ + 2NO_3^- + 5AH_2 \rightarrow N_2^+ + 6H_2O + 5A$$

Water quality processes Bacteriological pollution

- Indicator organisms (faecal Coli, faecal Streptococci)
- Exponential decrease in surface water conditions
 - water temperature
 - salt content
 - light intrusion
 - turbulence
 - competing organisms

Water quality processes Absorbed pollution

- Pollutants absorbed to suspended matter
 - Suspended organic matter / clay minerals
 - Suspended iron-hydroxide flocks
- Settling of particles according to Stokes
 - v = velocity of the settling
 - C_d = resistance coefficient
 - V = volume of a particle
 - A = projected area of the particle
 - ρ_d = density of the particle
 - ρ = density of the water

$$v = \sqrt{\frac{2}{C_d} \frac{V}{A} \cdot g \cdot \frac{\rho_d - \rho}{\rho}}$$

Water quality processes Absorbed pollution

- Settling depends on
 - Diameter of the particles (coagulation!)
 - Specific density of the particles
 - Water temperature
 - Hydraulic conditions (turbulence, dispersion)

Water quality processes Ecology

- Ecosystem: interactive, coherent entity of living (biotic) and non-living (abiotic) factors
- Abiotic

Biotic

- Physical factors
 - light
 - temperature
 - turbulence
- Chemical characteristics
 - dissolved gasses
 - major elements
 - nutrients
 - trace elements
 - organic substances

- Primary producers converting inorganic into organic matter
- Consumers
 - using organic matter
- Decomposers
 - converting organic into inorganic components

Water management in urban areas - Processes 2 78 89

Water quality processes Ecology in urban water systems

- Artificial character of the urban water system
 - European Water Framework Directive: 'heavily modified waters'
 - No straightforward reference system
- Specific kinds of pollution
 - Sewer Overflows
 - Stormwater runoff
- Relevant processes:
 - Oxygen balance
 - Nitrogen balance
 - Bacteriological pollution
 - Pollution absorbed to sediments
 - Eutrophication

- Trophic state classification of ecosystems
 - Total phosphorus
 - Chlorophyll a
 - Secchi depth

Trophic state	TP (μg.l ⁻¹)	Chl (µg.l ⁻¹)		Secchi (m)	
		mean	maximum	mean	maximum
Oligotrophic	< 10.00	< 2.5	< 8.0	> 6.0	> 3.0
Mesotrophic	10 – 35	2.5 - 8	8 – 25	6 - 3	3 – 1.5
Eutrophic	35 – 100	8 - 25	25 – 75	3 – 1.5	1.5 – 0.7
Hypertrophic	>100	> 25	> 75	< 1.5	< 0.7

- 1. Dynamic equilibrium
 - Aquatic plants provide spawning place for predatory fish which control fish population and thereby daphnids
 - Aquatic plants prevent suspension of sediment
- \rightarrow Increase of nitrogen and phosphate

- 1. Dynamic equilibrium
 - Aquatic plants provide spawning place for predatory fish which control fish population and thereby daphnids which control algae growth
 - Aquatic plants prevent suspension of sediment
- \rightarrow Increase of nitrogen and phosphate
- 2. Algae growth
 - Decrease of light intrusion
 - Decrease of aquatic plants, less predators, more bream, less daphnids
- \rightarrow Further increase of eutrophication

3. Algae bloom

- Aquatic plants dissapear, predators dissapear
- Benthivorous fish flourish
- \rightarrow Further increase of eutrophication

3. Algae bloom

- Aquatic plants dissapear, predators dissapear
- Benthivorous fish flourish
- \rightarrow Further increase of nutrients
- 4. Algae and bream dominated ecosystem
 - Turbid water
 - Low biodiversity
 - Toxic conditions
- \rightarrow Alternative stable state

Water quality processes Ecological water quality assessment

- Physical and chemical parameters \rightarrow conditions for an ecosystem
 - Water sample is exact value of a specific aspect at a specific time
- Ecological based assessments \rightarrow state of the ecosystem
 - Sample of organisms indicates conditions over longer period
- STOWA: urban ecological water quality assessment system (EBEOstad)
 - Perception by man
 - Ecological water quality
 - Ecological quality of the embankments

Water quality processes Ecological water quality assessment

Ecological indicators

Indicator	Description	Indicator organisms	
Saprobity	Measure for organic load (oxygen demanded load)	Macro invertebrates Diatoms	
Trophism	Measure for nutrient balance (ammonium-, nitrate, phosphate concentration and oxygen saturation)	Diatoms	
Construction and management	Connection with type of water body	Macro invertebrates Morphology	
Characteristics belonging to that variant of water body	Characteristics belonging to that variant of water body		
Characteristics belonging to that specific water body	Flora and fauna of that special type of water bodies	Macro invertebrates	

Exchange with the surrounding Water quantity

- Surplus water discharge
 - Stormwater runoff and drainage (via open water courses)
 - Effluent of waste water treatment plants
 - Combined sewer overflows
- Shortage during drought
 - Water inlet from rural surface water
- Hydraulically disconnect the urban water from the rural area
 - Backwater effect
 - Weirs
 - Pumps

Exchange with the surrounding Water quality

- Quality difference between in- and outflow
 - Discharge of relatively good quality storm- and drainage water

	Р	IN	BOD
Discharge to the canal system	3,4	20	17
Discharge to the surrounding	1,1	9	19
Retention in the canal system	2,3	11	-2

- Flushing of canal systems to restrict retention times
- Water intake during drought introduces poor quality water from the surroundings

Exchange with the surrounding Water quality

Water management in urban areas – Processes 2

89 | 89