Exam Dredging processes Wb3413

General

- 1. Derive the equations describing the Mohr circle and make a drawing of the Mohr circle, containing the shear and the normal stresses, the failure envelope and the angle of internal friction.
- 2. Derive the settling velocity of sphere's and explain how in practice the settling velocity of grains has to be determined (consider laminar and turbulent settling and a transition zone).

The Cutting of Sand

Consider sand with the following properties:

- $=40^{\circ}$ φ δ $= 30^{\circ}$ = 0.00002 m/ski = 0.0002 m/sk_{max} =42%ni = 50%n_{max} Blade properties: = 45° α $= 30^{\circ}$ β h_b = 0.1 m= 0.1 mhi b = 0.5 m
- 1. Make a graph of the Mohr circle of the sand.
- 2. Explain the phenomenon of dilatancy.
- 3. What is the difference between passive and active soil failure.
- 4. Make a graph of the horizontal cutting force as a function of the cutting velocity up to 5 m/s, for water depths of 0, 10 and 20 m.
- 5. Determine the specific energy at a cutting speed of 1 m/sec for the 3 waterdepths.

The Cutting of Clay

Consider clay with the following properties:

- c = 50 kPa (cohesion)
- a = 25 kPa (adhesion)
- t = 10 kPa (tensile strength)
- 1. Determine the cutting forces on the blade as described with sand cutting for the flow type of cutting process (velocity effects can be neglected).
- 2. Determine the specific energy.

Hopper Sedimentation

Consider a hopper with the following dimensions:

Length	50 m
Width	10 m
Height	6 m
Design density1.4 ton/m ³	
Flow	$5 \text{ m}^3/\text{sec}$
Density	1.3 ton/m^3

- 1. Explain the 8 phases of the loading process.
- 2. Determine the Hopper Load Parameter and explain the meaning of this parameter.
- 3. Suppose the weight of the contents of the hopper is 4000 tons, determine the effective load and the tons dry solid.
 - Has the overflow level been reached?
- 4. Determine the settling efficiency for a 100 μ m grain.

Breaching Process

- 1. By moving a suction tube in dense sand with a constant velocity in a horizontal direction, it creates a suction pit with variable slopes. The slope angle has a maximum in front of the suction tube and decreases towards the sides of the pit to an equilibrium value α .
 - On which variables depends the angle β in front of the suction tube?
 - What is the physical reason that the angle β is larger than α ?
- 2. The theoretical maximum production of a 10 m deep suction pit with sand of 100 μ m is about 600 m³/hr and when dredging sand of 200 μ m about 2400 m³/hr. The dredger is capable to dredge a production of 2500 m³/hr.
 - To which depth should the suction pit with 100 μ m to be increased to reach the same production as for 200 μ m sand?

The Cutting of Rock

- 1. In the below given figure two circle are drawn from different tests.
 - What kind of tests belongs to those circles?

- Draw in this figure the point of failure when the theory of Evans is valid.
- 2. Fractures in a rock can have a great influence on the production of a cutter dredger. Please explain why?
- 3. In the below given figure the failure of brittle material is given according Evans. When $\alpha=30^{\circ}$ and d=0.05 m and the uni-axial tensile strength is 4 MPa, calculate the total tensile force T

