Dynamics and Stability AE3-914

Answers to recommended exercises-Week 4
6.1 The equilibrium points and their nature are:
(a) $x=0$ is unstable; $x= \pm 1$ are stable
(b) $x=0$ is stable
(c) $x=0$ is unstable; $x=1$ is stable

Hint: The equilibrium points are found from $\dot{x}=\dot{y}=0$, where $y=\dot{x}$. The characteristics of each equilibrium point are found from the eigenvalues of the matrix corresponding to the linearisation of the system of differential equations provided by

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =f(x, y)
\end{aligned}
$$

where f is problem dependent. Alternatively, the potential V can be analysed for maxima and minima on the equilibrium points.
6.14 If $\omega^{2}<k / m$ the system is stable and if $\omega^{2}>k / m$ it is unstable. If a damper with coefficient c is added, the unstable configuration remains unstable because there is always a positive eigenvalue. The stable configuration can exhibit two different cases: If $0<(c / m)^{2}+4\left(\omega^{2}-k / m\right)<(c / m)^{2}$ the eigenvalues are real and negative and the system is overdamped. Qualitatively, there will be no oscillation about the equilibrium position.
If $(c / m)^{2}+4\left(\omega^{2}-k / m\right)<0$ the eigenvalues have a negative real part and an imaginary part, which situation corresponds to a subcritically damped system. There will be an oscillation about the equilibrium position.

Hint: The first case can be solved on an effective potential, but the second case must be solved by linearisation of the equations of motion (why?).
6.16 The equilibrium position $\theta=0$ is stable if $P<2 K / L$, where $L=O A=A B$ and θ is the angle between $O A$ and $O B$.
Hint: When stating the equation of motion, notice that P is an applied force that should be converted to a generalised force conjugate to the coordinate θ by means of, e.g., the method of virtual work. Notice also that the angle entering the elastic potential energy is 2θ rather than θ. Use a method of your choice, but use it properly!
6.29 Steady motion is found when

$$
\cos \theta=\frac{g}{l \dot{\phi}^{2}}
$$

The eigenvalues of the linearised equation of motion in θ are always negative, so the position is always stable. Notice that the position $\theta=0$ is attained when $\dot{\phi}^{2}=g / l$. For initial values of $\dot{\phi}^{2}$ smaller than g / l the angle θ would be undefined. Physically this would correspond to a position in which the pendulum remains vertical but which cannot be viewed as steady motion, because in such a case the integral of motion corresponding to the coordinate ϕ would identically vanish and the equation for θ would degenerate to that of a simple pendulum.
Warning: A possible error could be to assume that $\dot{\phi}$ is constant. In such a case we get three values of θ for which an equilibrium situation is possible:

$$
\theta=0, \quad \cos \theta=\frac{g}{l \dot{\phi}^{2}} \quad \text { and } \quad \theta=\pi
$$

The position $\theta=\pi$ is always unstable. The position $\theta=0$ is stable when $\dot{\phi}^{2}<g / l$ and unstable when $\dot{\phi}^{2}>g / l$. The position $\cos \theta=g /\left(l \dot{\phi}^{2}\right)$ is always stable. Notice that this position is only possible when the position $\theta=0$ has become unstable. The difference with the actual case is that if $\dot{\phi}$ is enforced to be constant we cannot have conservation of angular momentum when θ changes and that, formally, we cannot speak of steady motion.
6.31 The position $\theta=0$ is stable when $m g l<2 k a^{2}$, where l is the length of the pendulum.
6.43 The vertical solution is stable when

$$
m g>\frac{k(2 a-l)}{4}
$$

6.46 The bar is horizontal when $\theta=0$ or $\theta=\pi$. Notice that the bar rotates with constant angular velocity ω about a vertical, which makes this problem essentially different from 6.29. A careful analysis of the eigenvalues of the linearised equation around the equilibrium points (or of the maxima/minima of the effective potential) reveals the following:

For $\theta=0$:
If $a>l / \sqrt{3}$ then the position is stable when

$$
\omega^{2}<\frac{3 g \sqrt{a^{2}-\frac{1}{4} l^{2}}}{3 a^{2}-l^{2}}
$$

If $l / 2<a<l / \sqrt{3}$ then the position is stable when

$$
\omega^{2}>\frac{3 g \sqrt{a^{2}-\frac{1}{4} l^{2}}}{3 a^{2}-l^{2}}
$$

Since the right hand term in the latter equation is always negative in the corresponding interval of a, it can be stated that it will always be smaller than ω^{2}. So, in such a case, the position is stable for any ω.
For $\theta=\pi$:
If $a>l / \sqrt{3}$ the position would be stable when

$$
\omega^{2}<\frac{-3 g \sqrt{a^{2}-\frac{1}{4} l^{2}}}{3 a^{2}-l^{2}}
$$

but since the right hand side is negative in such a case, no ω can satisfy this equation. So the position is always unstable.
If $l / 2<a<l / \sqrt{3}$ the position is stable when

$$
\omega^{2}>\frac{-3 g \sqrt{a^{2}-\frac{1}{4} l^{2}}}{3 a^{2}-l^{2}}
$$

where the right hand side is positive. Thus, for sufficiently large ω the upper horizontal position is stable.
It is left to the reader to provide an intuitive interpretation of why the predicted stable configurations are actually stable.

