
Dynamics and Stability AE3-914

Answers to recommended exercises—Week 4

6.1 The equilibrium points and their nature are:
(a) x = 0 is unstable; x = ±1 are stable
(b) x = 0 is stable
(c) x = 0 is unstable; x = 1 is stable

Hint: The equilibrium points are found from ẋ = ẏ = 0, where y = ẋ. The
characteristics of each equilibrium point are found from the eigenvalues of the matrix
corresponding to the linearisation of the system of differential equations provided by

ẋ = y
ẏ = f(x, y)

where f is problem dependent. Alternatively, the potential V can be analysed for
maxima and minima on the equilibrium points.

6.14 If ω2 < k/m the system is stable and if ω2 > k/m it is unstable. If a damper with
coefficient c is added, the unstable configuration remains unstable because there is
always a positive eigenvalue. The stable configuration can exhibit two different cases:

If 0 < (c/m)2 + 4(ω2 − k/m) < (c/m)2 the eigenvalues are real and negative and
the system is overdamped. Qualitatively, there will be no oscillation about the
equilibrium position.

If (c/m)2 + 4(ω2 − k/m) < 0 the eigenvalues have a negative real part and an
imaginary part, which situation corresponds to a subcritically damped system. There
will be an oscillation about the equilibrium position.

Hint: The first case can be solved on an effective potential, but the second case must
be solved by linearisation of the equations of motion (why?).

6.16 The equilibrium position θ = 0 is stable if P < 2K/L, where L = OA = AB and θ
is the angle between OA and OB.

Hint: When stating the equation of motion, notice that P is an applied force that
should be converted to a generalised force conjugate to the coordinate θ by means
of, e.g., the method of virtual work. Notice also that the angle entering the elastic
potential energy is 2θ rather than θ. Use a method of your choice, but use it properly!



6.29 Steady motion is found when

cos θ =
g

lφ̇2

l

θ

φ

The eigenvalues of the linearised equation of motion in θ are always negative, so the
position is always stable. Notice that the position θ = 0 is attained when φ̇2 = g/l.
For initial values of φ̇2 smaller than g/l the angle θ would be undefined. Physically
this would correspond to a position in which the pendulum remains vertical but
which cannot be viewed as steady motion, because in such a case the integral of
motion corresponding to the coordinate φ would identically vanish and the equation
for θ would degenerate to that of a simple pendulum.

Warning: A possible error could be to assume that φ̇ is constant. In such a case we
get three values of θ for which an equilibrium situation is possible:

θ = 0, cos θ =
g

lφ̇2
and θ = π

The position θ = π is always unstable. The position θ = 0 is stable when φ̇2 < g/l
and unstable when φ̇2 > g/l. The position cos θ = g/(lφ̇2) is always stable. Notice
that this position is only possible when the position θ = 0 has become unstable. The
difference with the actual case is that if φ̇ is enforced to be constant we cannot have
conservation of angular momentum when θ changes and that, formally, we cannot
speak of steady motion.

6.31 The position θ = 0 is stable when mgl < 2ka2, where l is the length of the pendulum.

6.43 The vertical solution is stable when

mg >
k(2a − l)
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6.46 The bar is horizontal when θ = 0 or θ = π. Notice that the bar rotates with constant
angular velocity ω about a vertical, which makes this problem essentially different
from 6.29. A careful analysis of the eigenvalues of the linearised equation around
the equilibrium points (or of the maxima/minima of the effective potential) reveals
the following:



For θ = 0:

If a > l/
√

3 then the position is stable when

ω2 <
3g

√

a2 − 1

4
l2

3a2 − l2

If l/2 < a < l/
√

3 then the position is stable when

ω2 >
3g

√

a2 − 1

4
l2

3a2 − l2

Since the right hand term in the latter equation is always negative in the correspond-
ing interval of a, it can be stated that it will always be smaller than ω2. So, in such
a case, the position is stable for any ω.

For θ = π:

If a > l/
√

3 the position would be stable when

ω2 <
−3g

√

a2 − 1

4
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but since the right hand side is negative in such a case, no ω can satisfy this equation.
So the position is always unstable.

If l/2 < a < l/
√

3 the position is stable when

ω2 >
−3g

√

a2 − 1

4
l2

3a2 − l2

where the right hand side is positive. Thus, for sufficiently large ω the upper hori-
zontal position is stable.

It is left to the reader to provide an intuitive interpretation of why the predicted
stable configurations are actually stable.


