Dynamics and Stability AE3-914

Answers to recommended exercises-Week 6

3.3

(a) $\delta F=10 x \delta y+2 x y^{\prime} \delta y^{\prime}$
(b) $\delta I=\int_{x_{1}}^{x_{2}}\left[10 x-2\left(y^{\prime}+x y^{\prime \prime}\right)\right] \delta y d x+\left.2 x y^{\prime} \delta y\right|_{x_{1}} ^{x_{2}}$
(c) $10 x-2\left(y^{\prime}+x y^{\prime \prime}\right)=0$
3.5
(a) $2 y^{\prime \prime}+1=0$
(b) $y^{\prime \prime}-y=e^{x}$
(c) $y=-x / 2$
(d) $y=x$
(e) $y^{\prime \prime}+16 y=0$
(f) $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=x$
3.9 Euler-Lagrange equation:

$$
E \mathcal{I} \frac{d^{4} y}{d x^{4}}-q=0
$$

Natural boundary conditions:

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\left.\frac{d^{2} y}{d x^{2}}\right|_{x=L}=0
$$

If $E=E(x)$ and $\mathcal{I}=\mathcal{I}(x)$ the expressions in the variation of the functional will become more complicated. The Euler-Lagrange equations become

$$
E \mathcal{I} \frac{d^{4} y}{d x^{4}}+2 \frac{d(E \mathcal{I})}{d x} \frac{d^{3} y}{d x^{3}}+\frac{d^{2}(E \mathcal{I})}{d x^{2}} \frac{d^{2} y}{d x^{2}}-q=0
$$

but the natural boundary conditions do not change.
Hint: Use the standard integration by parts procedure and find the natural boundary conditions from that.
3.32 That is essentially the same as finding the shortest path between two points on a plane, so it should not be difficult for you. Notice that the book forgot to mention that the helix might include an integration constant.

3.34(a)

Euler-Lagrange equation:

$$
y^{\prime \prime}=y
$$

Essential boundary condition:

$$
y(0)=1
$$

Natural boundary condition:

$$
y^{\prime}(1)=0
$$

Solution:

$$
y=\frac{\cosh (1-x)}{\cosh 1}
$$

3.34(b)

Euler-Lagrange equation:

$$
y^{\prime \prime}=1
$$

Essential boundary condition:

$$
y(0)=\frac{1}{2}
$$

Natural boundary condition:

$$
y^{\prime}(1)+y(1)=-1
$$

Solution:

$$
y=\frac{1}{2}\left(x^{2}-3 x+1\right)
$$

Hint: Do not rely on given formulas for natural boundary conditions but find them on the variation of the functionals.
Remark: Notice that the concepts "essential" and "natural" are not coupled to the kind of boundary condition of the differential equation (Dirichlet, Neumann or Robin).

Extra exercise:

Show that if a functional

$$
I(y)=\int F d x
$$

is such that the integrand does not depend on x, that is, $F=F\left(y, y^{\prime}\right)$ then the extremals of I are the solution of the first-order differential equation

$$
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C,
$$

where C is a constant.
See next page for hints (after thinking by yourself for a while!)

Hint: The proposed integrand is analogous to a Lagrangian not depending on time. There is something about the Jacobi integral and integrals of motion for such a Lagrangian. The derivation asked for would be analogous to that in page 123 of Török. Rewrite it for this case.

